Abstract:The development of 3D medical vision-language models holds significant potential for disease diagnosis and patient treatment. However, compared to 2D medical images, 3D medical images, such as CT scans, face challenges related to limited training data and high dimension, which severely restrict the progress of 3D medical vision-language models. To address these issues, we collect a large amount of unlabeled 3D CT data and utilize self-supervised learning to construct a 3D visual foundation model for extracting 3D visual features. Then, we apply 3D spatial convolutions to aggregate and project high-level image features, reducing computational complexity while preserving spatial information. We also construct two instruction-tuning datasets based on BIMCV-R and CT-RATE to fine-tune the 3D vision-language model. Our model demonstrates superior performance compared to existing methods in report generation, visual question answering, and disease diagnosis. Code and data will be made publicly available soon.
Abstract:With the recent advancements in single-image-based human mesh recovery, there is a growing interest in enhancing its performance in certain extreme scenarios, such as occlusion, while maintaining overall model accuracy. Although obtaining accurately annotated 3D human poses under occlusion is challenging, there is still a wealth of rich and precise 2D pose annotations that can be leveraged. However, existing works mostly focus on directly leveraging 2D pose coordinates to estimate 3D pose and mesh. In this paper, we present PostoMETRO($\textbf{Pos}$e $\textbf{to}$ken enhanced $\textbf{ME}$sh $\textbf{TR}$ansf$\textbf{O}$rmer), which integrates occlusion-resilient 2D pose representation into transformers in a token-wise manner. Utilizing a specialized pose tokenizer, we efficiently condense 2D pose data to a compact sequence of pose tokens and feed them to the transformer together with the image tokens. This process not only ensures a rich depiction of texture from the image but also fosters a robust integration of pose and image information. Subsequently, these combined tokens are queried by vertex and joint tokens to decode 3D coordinates of mesh vertices and human joints. Facilitated by the robust pose token representation and the effective combination, we are able to produce more precise 3D coordinates, even under extreme scenarios like occlusion. Experiments on both standard and occlusion-specific benchmarks demonstrate the effectiveness of PostoMETRO. Qualitative results further illustrate the clarity of how 2D pose can help 3D reconstruction. Code will be made available.
Abstract:The advancement of Zero-Shot Learning in the medical domain has been driven forward by using pre-trained models on large-scale image-text pairs, focusing on image-text alignment. However, existing methods primarily rely on cosine similarity for alignment, which may not fully capture the complex relationship between medical images and reports. To address this gap, we introduce a novel approach called Cross-Attention Alignment for Radiology Zero-Shot Classification (CARZero). Our approach innovatively leverages cross-attention mechanisms to process image and report features, creating a Similarity Representation that more accurately reflects the intricate relationships in medical semantics. This representation is then linearly projected to form an image-text similarity matrix for cross-modality alignment. Additionally, recognizing the pivotal role of prompt selection in zero-shot learning, CARZero incorporates a Large Language Model-based prompt alignment strategy. This strategy standardizes diverse diagnostic expressions into a unified format for both training and inference phases, overcoming the challenges of manual prompt design. Our approach is simple yet effective, demonstrating state-of-the-art performance in zero-shot classification on five official chest radiograph diagnostic test sets, including remarkable results on datasets with long-tail distributions of rare diseases. This achievement is attributed to our new image-text alignment strategy, which effectively addresses the complex relationship between medical images and reports.
Abstract:Despite significant advancements in medical vision-language pre-training, existing methods have largely overlooked the inherent entity-specific context within radiology reports and the complex cross-modality contextual relationships between text and images. To close this gap, we propose a novel Entity-centered Context-aware Medical Vision-language Pre-training (ECAMP) framework, which is designed to enable a more entity-centered and context-sensitive interpretation of medical data. Utilizing the recent powerful large language model, we distill entity-centered context from medical reports, which enables ECAMP to gain more effective supervision from the text modality. By further pre-training our model with carefully designed entity-aware, context-enhanced masked language modeling and context-guided super-resolution tasks, ECAMP significantly refines the interplay between text and image modalities, leading to an enhanced ability to extract entity-centered contextual features. Besides, our proposed multi-scale context fusion design also improves the semantic integration of both coarse and fine-level image representations, prompting better performance for multi-scale downstream applications. Combining these components leads to significant performance leaps over current state-of-the-art methods and establishes a new standard for cross-modality learning in medical imaging, whose effectiveness is demonstrated by our extensive experiments on various tasks including classification, segmentation, and detection across several public datasets. Code and models are available at https://github.com/ToniChopp/ECAMP.
Abstract:We propose a novel task for generating 3D dance movements that simultaneously incorporate both text and music modalities. Unlike existing works that generate dance movements using a single modality such as music, our goal is to produce richer dance movements guided by the instructive information provided by the text. However, the lack of paired motion data with both music and text modalities limits the ability to generate dance movements that integrate both. To alleviate this challenge, we propose to utilize a 3D human motion VQ-VAE to project the motions of the two datasets into a latent space consisting of quantized vectors, which effectively mix the motion tokens from the two datasets with different distributions for training. Additionally, we propose a cross-modal transformer to integrate text instructions into motion generation architecture for generating 3D dance movements without degrading the performance of music-conditioned dance generation. To better evaluate the quality of the generated motion, we introduce two novel metrics, namely Motion Prediction Distance (MPD) and Freezing Score, to measure the coherence and freezing percentage of the generated motion. Extensive experiments show that our approach can generate realistic and coherent dance movements conditioned on both text and music while maintaining comparable performance with the two single modalities. Code will be available at: https://garfield-kh.github.io/TM2D/.
Abstract:We present OmniAvatar, a novel geometry-guided 3D head synthesis model trained from in-the-wild unstructured images that is capable of synthesizing diverse identity-preserved 3D heads with compelling dynamic details under full disentangled control over camera poses, facial expressions, head shapes, articulated neck and jaw poses. To achieve such high level of disentangled control, we first explicitly define a novel semantic signed distance function (SDF) around a head geometry (FLAME) conditioned on the control parameters. This semantic SDF allows us to build a differentiable volumetric correspondence map from the observation space to a disentangled canonical space from all the control parameters. We then leverage the 3D-aware GAN framework (EG3D) to synthesize detailed shape and appearance of 3D full heads in the canonical space, followed by a volume rendering step guided by the volumetric correspondence map to output into the observation space. To ensure the control accuracy on the synthesized head shapes and expressions, we introduce a geometry prior loss to conform to head SDF and a control loss to conform to the expression code. Further, we enhance the temporal realism with dynamic details conditioned upon varying expressions and joint poses. Our model can synthesize more preferable identity-preserved 3D heads with compelling dynamic details compared to the state-of-the-art methods both qualitatively and quantitatively. We also provide an ablation study to justify many of our system design choices.
Abstract:While substantial progresses have been made in automated 2D portrait stylization, admirable 3D portrait stylization from a single user photo remains to be an unresolved challenge. One primary obstacle here is the lack of high quality stylized 3D training data. In this paper, we propose a novel framework \emph{AgileGAN3D} that can produce 3D artistically appealing and personalized portraits with detailed geometry. New stylization can be obtained with just a few (around 20) unpaired 2D exemplars. We achieve this by first leveraging existing 2D stylization capabilities, \emph{style prior creation}, to produce a large amount of augmented 2D style exemplars. These augmented exemplars are generated with accurate camera pose labels, as well as paired real face images, which prove to be critical for the downstream 3D stylization task. Capitalizing on the recent advancement of 3D-aware GAN models, we perform \emph{guided transfer learning} on a pretrained 3D GAN generator to produce multi-view-consistent stylized renderings. In order to achieve 3D GAN inversion that can preserve subject's identity well, we incorporate \emph{multi-view consistency loss} in the training of our encoder. Our pipeline demonstrates strong capability in turning user photos into a diverse range of 3D artistic portraits. Both qualitative results and quantitative evaluations have been conducted to show the superior performance of our method. Code and pretrained models will be released for reproduction purpose.
Abstract:Unsupervised generation of 3D-aware clothed humans with various appearances and controllable geometries is important for creating virtual human avatars and other AR/VR applications. Existing methods are either limited to rigid object modeling, or not generative and thus unable to generate high-quality virtual humans and animate them. In this work, we propose AvatarGen, the first method that enables not only geometry-aware clothed human synthesis with high-fidelity appearances but also disentangled human animation controllability, while only requiring 2D images for training. Specifically, we decompose the generative 3D human synthesis into pose-guided mapping and canonical representation with predefined human pose and shape, such that the canonical representation can be explicitly driven to different poses and shapes with the guidance of a 3D parametric human model SMPL. AvatarGen further introduces a deformation network to learn non-rigid deformations for modeling fine-grained geometric details and pose-dependent dynamics. To improve the geometry quality of the generated human avatars, it leverages the signed distance field as geometric proxy, which allows more direct regularization from the 3D geometric priors of SMPL. Benefiting from these designs, our method can generate animatable 3D human avatars with high-quality appearance and geometry modeling, significantly outperforming previous 3D GANs. Furthermore, it is competent for many applications, e.g., single-view reconstruction, re-animation, and text-guided synthesis/editing. Code and pre-trained model will be available at http://jeff95.me/projects/avatargen.html.
Abstract:Class Incremental Learning (CIL) aims at learning a multi-class classifier in a phase-by-phase manner, in which only data of a subset of the classes are provided at each phase. Previous works mainly focus on mitigating forgetting in phases after the initial one. However, we find that improving CIL at its initial phase is also a promising direction. Specifically, we experimentally show that directly encouraging CIL Learner at the initial phase to output similar representations as the model jointly trained on all classes can greatly boost the CIL performance. Motivated by this, we study the difference between a na\"ively-trained initial-phase model and the oracle model. Specifically, since one major difference between these two models is the number of training classes, we investigate how such difference affects the model representations. We find that, with fewer training classes, the data representations of each class lie in a long and narrow region; with more training classes, the representations of each class scatter more uniformly. Inspired by this observation, we propose Class-wise Decorrelation (CwD) that effectively regularizes representations of each class to scatter more uniformly, thus mimicking the model jointly trained with all classes (i.e., the oracle model). Our CwD is simple to implement and easy to plug into existing methods. Extensive experiments on various benchmark datasets show that CwD consistently and significantly improves the performance of existing state-of-the-art methods by around 1\% to 3\%. Code will be released.
Abstract:Visual recognition has been dominated by convolutional neural networks (CNNs) for years. Though recently the prevailing vision transformers (ViTs) have shown great potential of self-attention based models in ImageNet classification, their performance is still inferior to that of the latest SOTA CNNs if no extra data are provided. In this work, we try to close the performance gap and demonstrate that attention-based models are indeed able to outperform CNNs. We find a major factor limiting the performance of ViTs for ImageNet classification is their low efficacy in encoding fine-level features into the token representations. To resolve this, we introduce a novel outlook attention and present a simple and general architecture, termed Vision Outlooker (VOLO). Unlike self-attention that focuses on global dependency modeling at a coarse level, the outlook attention efficiently encodes finer-level features and contexts into tokens, which is shown to be critically beneficial to recognition performance but largely ignored by the self-attention. Experiments show that our VOLO achieves 87.1% top-1 accuracy on ImageNet-1K classification, which is the first model exceeding 87% accuracy on this competitive benchmark, without using any extra training data In addition, the pre-trained VOLO transfers well to downstream tasks, such as semantic segmentation. We achieve 84.3% mIoU score on the cityscapes validation set and 54.3% on the ADE20K validation set. Code is available at \url{https://github.com/sail-sg/volo}.