Abstract:This work presents an interpretable decision-making framework for autonomous vehicles that integrates traffic regulations, norms, and safety guidelines comprehensively and enables seamless adaptation to different regions. While traditional rule-based methods struggle to incorporate the full scope of traffic rules, we develop a Traffic Regulation Retrieval (TRR) Agent based on Retrieval-Augmented Generation (RAG) to automatically retrieve relevant traffic rules and guidelines from extensive regulation documents and relevant records based on the ego vehicle's situation. Given the semantic complexity of the retrieved rules, we also design a reasoning module powered by a Large Language Model (LLM) to interpret these rules, differentiate between mandatory rules and safety guidelines, and assess actions on legal compliance and safety. Additionally, the reasoning is designed to be interpretable, enhancing both transparency and reliability. The framework demonstrates robust performance on both hypothesized and real-world cases across diverse scenarios, along with the ability to adapt to different regions with ease.
Abstract:Understanding human mobility patterns is crucial for urban planning, transportation management, and public health. This study tackles two primary challenges in the field: the reliance on trajectory data, which often fails to capture the semantic interdependencies of activities, and the inherent incompleteness of real-world trajectory data. We have developed a model that reconstructs and learns human mobility patterns by focusing on semantic activity chains. We introduce a semi-supervised iterative transfer learning algorithm to adapt models to diverse geographical contexts and address data scarcity. Our model is validated using comprehensive datasets from the United States, where it effectively reconstructs activity chains and generates high-quality synthetic mobility data, achieving a low Jensen-Shannon Divergence (JSD) value of 0.001, indicating a close similarity between synthetic and real data. Additionally, sparse GPS data from Egypt is used to evaluate the transfer learning algorithm, demonstrating successful adaptation of US mobility patterns to Egyptian contexts, achieving a 64\% of increase in similarity, i.e., a JSD reduction from 0.09 to 0.03. This mobility reconstruction model and the associated transfer learning algorithm show significant potential for global human mobility modeling studies, enabling policymakers and researchers to design more effective and culturally tailored transportation solutions.
Abstract:Understanding human mobility patterns has traditionally been a complex challenge in transportation modeling. Due to the difficulties in obtaining high-quality training datasets across diverse locations, conventional activity-based models and learning-based human mobility modeling algorithms are particularly limited by the availability and quality of datasets. Furthermore, current research mainly focuses on the spatial-temporal travel pattern but lacks an understanding of the semantic information between activities, which is crucial for modeling the interdependence between activities. In this paper, we propose an innovative Large Language Model (LLM) empowered human mobility modeling framework. Our proposed approach significantly reduces the reliance on detailed human mobility statistical data, utilizing basic socio-demographic information of individuals to generate their daily mobility patterns. We have validated our results using the NHTS and SCAG-ABM datasets, demonstrating the effective modeling of mobility patterns and the strong adaptability of our framework across various geographic locations.
Abstract:Collecting real-world mobility data is challenging. It is often fraught with privacy concerns, logistical difficulties, and inherent biases. Moreover, accurately annotating anomalies in large-scale data is nearly impossible, as it demands meticulous effort to distinguish subtle and complex patterns. These challenges significantly impede progress in geospatial anomaly detection research by restricting access to reliable data and complicating the rigorous evaluation, comparison, and benchmarking of methodologies. To address these limitations, we introduce a synthetic mobility dataset, NUMOSIM, that provides a controlled, ethical, and diverse environment for benchmarking anomaly detection techniques. NUMOSIM simulates a wide array of realistic mobility scenarios, encompassing both typical and anomalous behaviours, generated through advanced deep learning models trained on real mobility data. This approach allows NUMOSIM to accurately replicate the complexities of real-world movement patterns while strategically injecting anomalies to challenge and evaluate detection algorithms based on how effectively they capture the interplay between demographic, geospatial, and temporal factors. Our goal is to advance geospatial mobility analysis by offering a realistic benchmark for improving anomaly detection and mobility modeling techniques. To support this, we provide open access to the NUMOSIM dataset, along with comprehensive documentation, evaluation metrics, and benchmark results.
Abstract:Motion prediction plays an essential role in autonomous driving systems, enabling autonomous vehicles to achieve more accurate local-path planning and driving decisions based on predictions of the surrounding vehicles. However, existing methods neglect the potential missing values caused by object occlusion, perception failures, etc., which inevitably degrades the trajectory prediction performance in real traffic scenarios. To address this limitation, we propose a novel end-to-end framework for incomplete vehicle trajectory prediction, named Multi-scale Temporal Fusion Transformer (MTFT), which consists of the Multi-scale Attention Head (MAH) and the Continuity Representation-guided Multi-scale Fusion (CRMF) module. Specifically, the MAH leverages the multi-head attention mechanism to parallelly capture multi-scale motion representation of trajectory from different temporal granularities, thus mitigating the adverse effect of missing values on prediction. Furthermore, the multi-scale motion representation is input into the CRMF module for multi-scale fusion to obtain the robust temporal feature of the vehicle. During the fusion process, the continuity representation of vehicle motion is first extracted across time steps to guide the fusion, ensuring that the resulting temporal feature incorporates both detailed information and the overall trend of vehicle motion, which facilitates the accurate decoding of future trajectory that is consistent with the vehicle's motion trend. We evaluate the proposed model on four datasets derived from highway and urban traffic scenarios. The experimental results demonstrate its superior performance in the incomplete vehicle trajectory prediction task compared with state-of-the-art models, e.g., a comprehensive performance improvement of more than 39% on the HighD dataset.
Abstract:The limitations of task-specific and general image restoration methods for specific degradation have prompted the development of all-in-one image restoration techniques. However, the diversity of patterns among multiple degradation, along with the significant uncertainties in mapping between degraded images of different severities and their corresponding undistorted versions, pose significant challenges to the all-in-one restoration tasks. To address these challenges, we propose Perceive-IR, an all-in-one image restorer designed to achieve fine-grained quality control that enables restored images to more closely resemble their undistorted counterparts, regardless of the type or severity of degradation. Specifically, Perceive-IR contains two stages: (1) prompt learning stage and (2) restoration stage. In the prompt learning stage, we leverage prompt learning to acquire a fine-grained quality perceiver capable of distinguishing three-tier quality levels by constraining the prompt-image similarity in the CLIP perception space. Subsequently, this quality perceiver and difficulty-adaptive perceptual loss are integrated as a quality-aware learning strategy to realize fine-grained quality control in restoration stage. For the restoration stage, a semantic guidance module (SGM) and compact feature extraction (CFE) are proposed to further promote the restoration process by utilizing the robust semantic information from the pre-trained large scale vision models and distinguishing degradation-specific features. Extensive experiments demonstrate that our Perceive-IR outperforms state-of-the-art methods in all-in-one image restoration tasks and exhibit superior generalization ability when dealing with unseen tasks.
Abstract:Existing Vehicle-to-Everything (V2X) cooperative perception methods rely on accurate multi-agent 3D annotations. Nevertheless, it is time-consuming and expensive to collect and annotate real-world data, especially for V2X systems. In this paper, we present a self-supervised learning method for V2X cooperative perception, which utilizes the vast amount of unlabeled 3D V2X data to enhance the perception performance. Beyond simply extending the previous pre-training methods for point-cloud representation learning, we introduce a novel self-supervised Cooperative Pretraining framework (termed as CooPre) customized for a collaborative scenario. We point out that cooperative point-cloud sensing compensates for information loss among agents. This motivates us to design a novel proxy task for the 3D encoder to reconstruct LiDAR point clouds across different agents. Besides, we develop a V2X bird-eye-view (BEV) guided masking strategy which effectively allows the model to pay attention to 3D features across heterogeneous V2X agents (i.e., vehicles and infrastructure) in the BEV space. Noticeably, such a masking strategy effectively pretrains the 3D encoder and is compatible with mainstream cooperative perception backbones. Our approach, validated through extensive experiments on representative datasets (i.e., V2X-Real, V2V4Real, and OPV2V), leads to a performance boost across all V2X settings. Additionally, we demonstrate the framework's improvements in cross-domain transferability, data efficiency, and robustness under challenging scenarios. The code will be made publicly available.
Abstract:Motion forecasting plays a pivotal role in autonomous driving systems, enabling vehicles to execute collision warnings and rational local-path planning based on predictions of the surrounding vehicles. However, prevalent methods often assume complete observed trajectories, neglecting the potential impact of missing values induced by object occlusion, scope limitation, and sensor failures. Such oversights inevitably compromise the accuracy of trajectory predictions. To tackle this challenge, we propose an end-to-end framework, termed Multiscale Transformer (MSTF), meticulously crafted for incomplete trajectory prediction. MSTF integrates a Multiscale Attention Head (MAH) and an Information Increment-based Pattern Adaptive (IIPA) module. Specifically, the MAH component concurrently captures multiscale motion representation of trajectory sequence from various temporal granularities, utilizing a multi-head attention mechanism. This approach facilitates the modeling of global dependencies in motion across different scales, thereby mitigating the adverse effects of missing values. Additionally, the IIPA module adaptively extracts continuity representation of motion across time steps by analyzing missing patterns in the data. The continuity representation delineates motion trend at a higher level, guiding MSTF to generate predictions consistent with motion continuity. We evaluate our proposed MSTF model using two large-scale real-world datasets. Experimental results demonstrate that MSTF surpasses state-of-the-art (SOTA) models in the task of incomplete trajectory prediction, showcasing its efficacy in addressing the challenges posed by missing values in motion forecasting for autonomous driving systems.
Abstract:Foundation models (FMs) are revolutionizing the analysis and understanding of remote sensing (RS) scenes, including aerial RGB, multispectral, and SAR images. However, hyperspectral images (HSIs), which are rich in spectral information, have not seen much application of FMs, with existing methods often restricted to specific tasks and lacking generality. To fill this gap, we introduce HyperSIGMA, a vision transformer-based foundation model for HSI interpretation, scalable to over a billion parameters. To tackle the spectral and spatial redundancy challenges in HSIs, we introduce a novel sparse sampling attention (SSA) mechanism, which effectively promotes the learning of diverse contextual features and serves as the basic block of HyperSIGMA. HyperSIGMA integrates spatial and spectral features using a specially designed spectral enhancement module. In addition, we construct a large-scale hyperspectral dataset, HyperGlobal-450K, for pre-training, which contains about 450K hyperspectral images, significantly surpassing existing datasets in scale. Extensive experiments on various high-level and low-level HSI tasks demonstrate HyperSIGMA's versatility and superior representational capability compared to current state-of-the-art methods. Moreover, HyperSIGMA shows significant advantages in scalability, robustness, cross-modal transferring capability, and real-world applicability.
Abstract:Accurate traffic prediction is vital for effective traffic management during hurricane evacuation. This paper proposes a predictive modeling system that integrates Multilayer Perceptron (MLP) and Long-Short Term Memory (LSTM) models to capture both long-term congestion patterns and short-term speed patterns. Leveraging various input variables, including archived traffic data, spatial-temporal road network information, and hurricane forecast data, the framework is designed to address challenges posed by heterogeneous human behaviors, limited evacuation data, and hurricane event uncertainties. Deployed in a real-world traffic prediction system in Louisiana, the model achieved an 82% accuracy in predicting long-term congestion states over a 6-hour period during a 7-day hurricane-impacted duration. The short-term speed prediction model exhibited Mean Absolute Percentage Errors (MAPEs) ranging from 7% to 13% across evacuation horizons from 1 to 6 hours. Evaluation results underscore the model's potential to enhance traffic management during hurricane evacuations, and real-world deployment highlights its adaptability and scalability in diverse hurricane scenarios within extensive transportation networks.