Abstract:Human mobility modeling is critical for urban planning and transportation management, yet existing datasets often lack the resolution and semantic richness required for comprehensive analysis. To address this, we proposed a cross-domain data fusion framework that integrates multi-modal data of distinct nature and spatio-temporal resolution, including geographical, mobility, socio-demographic, and traffic information, to construct a privacy-preserving and semantically enriched human travel trajectory dataset. This framework is demonstrated through two case studies in Los Angeles (LA) and Egypt, where a domain adaptation algorithm ensures its transferability across diverse urban contexts. Quantitative evaluation shows that the generated synthetic dataset accurately reproduces mobility patterns observed in empirical data. Moreover, large-scale traffic simulations for LA County based on the generated synthetic demand align well with observed traffic. On California's I-405 corridor, the simulation yields a Mean Absolute Percentage Error of 5.85% for traffic volume and 4.36% for speed compared to Caltrans PeMS observations.
Abstract:Understanding human mobility patterns is crucial for urban planning, transportation management, and public health. This study tackles two primary challenges in the field: the reliance on trajectory data, which often fails to capture the semantic interdependencies of activities, and the inherent incompleteness of real-world trajectory data. We have developed a model that reconstructs and learns human mobility patterns by focusing on semantic activity chains. We introduce a semi-supervised iterative transfer learning algorithm to adapt models to diverse geographical contexts and address data scarcity. Our model is validated using comprehensive datasets from the United States, where it effectively reconstructs activity chains and generates high-quality synthetic mobility data, achieving a low Jensen-Shannon Divergence (JSD) value of 0.001, indicating a close similarity between synthetic and real data. Additionally, sparse GPS data from Egypt is used to evaluate the transfer learning algorithm, demonstrating successful adaptation of US mobility patterns to Egyptian contexts, achieving a 64\% of increase in similarity, i.e., a JSD reduction from 0.09 to 0.03. This mobility reconstruction model and the associated transfer learning algorithm show significant potential for global human mobility modeling studies, enabling policymakers and researchers to design more effective and culturally tailored transportation solutions.