Abstract:Understanding human mobility patterns is crucial for urban planning, transportation management, and public health. This study tackles two primary challenges in the field: the reliance on trajectory data, which often fails to capture the semantic interdependencies of activities, and the inherent incompleteness of real-world trajectory data. We have developed a model that reconstructs and learns human mobility patterns by focusing on semantic activity chains. We introduce a semi-supervised iterative transfer learning algorithm to adapt models to diverse geographical contexts and address data scarcity. Our model is validated using comprehensive datasets from the United States, where it effectively reconstructs activity chains and generates high-quality synthetic mobility data, achieving a low Jensen-Shannon Divergence (JSD) value of 0.001, indicating a close similarity between synthetic and real data. Additionally, sparse GPS data from Egypt is used to evaluate the transfer learning algorithm, demonstrating successful adaptation of US mobility patterns to Egyptian contexts, achieving a 64\% of increase in similarity, i.e., a JSD reduction from 0.09 to 0.03. This mobility reconstruction model and the associated transfer learning algorithm show significant potential for global human mobility modeling studies, enabling policymakers and researchers to design more effective and culturally tailored transportation solutions.
Abstract:Collecting real-world mobility data is challenging. It is often fraught with privacy concerns, logistical difficulties, and inherent biases. Moreover, accurately annotating anomalies in large-scale data is nearly impossible, as it demands meticulous effort to distinguish subtle and complex patterns. These challenges significantly impede progress in geospatial anomaly detection research by restricting access to reliable data and complicating the rigorous evaluation, comparison, and benchmarking of methodologies. To address these limitations, we introduce a synthetic mobility dataset, NUMOSIM, that provides a controlled, ethical, and diverse environment for benchmarking anomaly detection techniques. NUMOSIM simulates a wide array of realistic mobility scenarios, encompassing both typical and anomalous behaviours, generated through advanced deep learning models trained on real mobility data. This approach allows NUMOSIM to accurately replicate the complexities of real-world movement patterns while strategically injecting anomalies to challenge and evaluate detection algorithms based on how effectively they capture the interplay between demographic, geospatial, and temporal factors. Our goal is to advance geospatial mobility analysis by offering a realistic benchmark for improving anomaly detection and mobility modeling techniques. To support this, we provide open access to the NUMOSIM dataset, along with comprehensive documentation, evaluation metrics, and benchmark results.
Abstract:Human mobility significantly impacts various aspects of society, including transportation, urban planning, and public health. The increasing availability of diverse mobility data and advancements in deep learning have revolutionized mobility modeling. Existing deep learning models, however, mainly study spatio-temporal patterns using trajectories and often fall short in capturing the underlying semantic interdependency among activities. Moreover, they are also constrained by the data source. These two factors thereby limit their realism and adaptability, respectively. Meanwhile, traditional activity-based models (ABMs) in transportation modeling rely on rigid assumptions and are costly and time-consuming to calibrate, making them difficult to adapt and scale to new regions, especially those regions with limited amount of required conventional travel data. To address these limitations, we develop a novel generative deep learning approach for human mobility modeling and synthesis, using ubiquitous and open-source data. Additionally, the model can be fine-tuned with local data, enabling adaptable and accurate representations of mobility patterns across different regions. The model is evaluated on a nationwide dataset of the United States, where it demonstrates superior performance in generating activity chains that closely follow ground truth distributions. Further tests using state- or city-specific datasets from California, Washington, and Mexico City confirm its transferability. This innovative approach offers substantial potential to advance mobility modeling research, especially in generating human activity chains as input for downstream activity-based mobility simulation models and providing enhanced tools for urban planners and policymakers.
Abstract:Human travel trajectory mining is crucial for transportation systems, enhancing route optimization, traffic management, and the study of human travel patterns. Previous rule-based approaches without the integration of semantic information show a limitation in both efficiency and accuracy. Semantic information, such as activity types inferred from Points of Interest (POI) data, can significantly enhance the quality of trajectory mining. However, integrating these insights is challenging, as many POIs have incomplete feature information, and current learning-based POI algorithms require the integrity of datasets to do the classification. In this paper, we introduce a novel pipeline for human travel trajectory mining. Our approach first leverages the strong inferential and comprehension capabilities of large language models (LLMs) to annotate POI with activity types and then uses a Bayesian-based algorithm to infer activity for each stay point in a trajectory. In our evaluation using the OpenStreetMap (OSM) POI dataset, our approach achieves a 93.4% accuracy and a 96.1% F-1 score in POI classification, and a 91.7% accuracy with a 92.3% F-1 score in activity inference.