Abstract:This work presents an interpretable decision-making framework for autonomous vehicles that integrates traffic regulations, norms, and safety guidelines comprehensively and enables seamless adaptation to different regions. While traditional rule-based methods struggle to incorporate the full scope of traffic rules, we develop a Traffic Regulation Retrieval (TRR) Agent based on Retrieval-Augmented Generation (RAG) to automatically retrieve relevant traffic rules and guidelines from extensive regulation documents and relevant records based on the ego vehicle's situation. Given the semantic complexity of the retrieved rules, we also design a reasoning module powered by a Large Language Model (LLM) to interpret these rules, differentiate between mandatory rules and safety guidelines, and assess actions on legal compliance and safety. Additionally, the reasoning is designed to be interpretable, enhancing both transparency and reliability. The framework demonstrates robust performance on both hypothesized and real-world cases across diverse scenarios, along with the ability to adapt to different regions with ease.
Abstract:Understanding human mobility patterns is crucial for urban planning, transportation management, and public health. This study tackles two primary challenges in the field: the reliance on trajectory data, which often fails to capture the semantic interdependencies of activities, and the inherent incompleteness of real-world trajectory data. We have developed a model that reconstructs and learns human mobility patterns by focusing on semantic activity chains. We introduce a semi-supervised iterative transfer learning algorithm to adapt models to diverse geographical contexts and address data scarcity. Our model is validated using comprehensive datasets from the United States, where it effectively reconstructs activity chains and generates high-quality synthetic mobility data, achieving a low Jensen-Shannon Divergence (JSD) value of 0.001, indicating a close similarity between synthetic and real data. Additionally, sparse GPS data from Egypt is used to evaluate the transfer learning algorithm, demonstrating successful adaptation of US mobility patterns to Egyptian contexts, achieving a 64\% of increase in similarity, i.e., a JSD reduction from 0.09 to 0.03. This mobility reconstruction model and the associated transfer learning algorithm show significant potential for global human mobility modeling studies, enabling policymakers and researchers to design more effective and culturally tailored transportation solutions.
Abstract:Understanding human mobility patterns has traditionally been a complex challenge in transportation modeling. Due to the difficulties in obtaining high-quality training datasets across diverse locations, conventional activity-based models and learning-based human mobility modeling algorithms are particularly limited by the availability and quality of datasets. Furthermore, current research mainly focuses on the spatial-temporal travel pattern but lacks an understanding of the semantic information between activities, which is crucial for modeling the interdependence between activities. In this paper, we propose an innovative Large Language Model (LLM) empowered human mobility modeling framework. Our proposed approach significantly reduces the reliance on detailed human mobility statistical data, utilizing basic socio-demographic information of individuals to generate their daily mobility patterns. We have validated our results using the NHTS and SCAG-ABM datasets, demonstrating the effective modeling of mobility patterns and the strong adaptability of our framework across various geographic locations.
Abstract:Human travel trajectory mining is crucial for transportation systems, enhancing route optimization, traffic management, and the study of human travel patterns. Previous rule-based approaches without the integration of semantic information show a limitation in both efficiency and accuracy. Semantic information, such as activity types inferred from Points of Interest (POI) data, can significantly enhance the quality of trajectory mining. However, integrating these insights is challenging, as many POIs have incomplete feature information, and current learning-based POI algorithms require the integrity of datasets to do the classification. In this paper, we introduce a novel pipeline for human travel trajectory mining. Our approach first leverages the strong inferential and comprehension capabilities of large language models (LLMs) to annotate POI with activity types and then uses a Bayesian-based algorithm to infer activity for each stay point in a trajectory. In our evaluation using the OpenStreetMap (OSM) POI dataset, our approach achieves a 93.4% accuracy and a 96.1% F-1 score in POI classification, and a 91.7% accuracy with a 92.3% F-1 score in activity inference.
Abstract:Biases and stereotypes in Large Language Models (LLMs) can have negative implications for user experience and societal outcomes. Current approaches to bias mitigation like Reinforcement Learning from Human Feedback (RLHF) rely on costly manual feedback. While LLMs have the capability to understand logic and identify biases in text, they often struggle to effectively acknowledge and address their own biases due to factors such as prompt influences, internal mechanisms, and policies. We found that informing LLMs that the content they generate is not their own and questioning them about potential biases in the text can significantly enhance their recognition and improvement capabilities regarding biases. Based on this finding, we propose RLRF (Reinforcement Learning from Reflection through Debates as Feedback), replacing human feedback with AI for bias mitigation. RLRF engages LLMs in multi-role debates to expose biases and gradually reduce biases in each iteration using a ranking scoring mechanism. The dialogue are then used to create a dataset with high-bias and low-bias instances to train the reward model in reinforcement learning. This dataset can be generated by the same LLMs for self-reflection or a superior LLMs guiding the former in a student-teacher mode to enhance its logical reasoning abilities. Experimental results demonstrate the significant effectiveness of our approach in bias reduction.
Abstract:Large Language Models (LLMs) embed complex biases and stereotypes that can lead to detrimental user experiences and societal consequences, often without conscious awareness from the models themselves. This paper emphasizes the importance of equipping LLMs with mechanisms for better self-reflection and bias recognition. Our experiments demonstrate that by informing LLMs that their generated content does not represent their own views and questioning them about bias, their capability to identify and address biases improves. This enhancement is attributed to the internal attention mechanisms and potential internal sensitivity policies of LLMs. Building upon these findings, we propose a novel method to diminish bias in LLM outputs. This involves engaging LLMs in multi-role scenarios acting as different roles where they are tasked for bias exposure, with a role of an impartial referee in the end of each loop of debate. A ranking scoring mechanism is employed to quantify bias levels, enabling more refined reflections and superior output quality. Comparative experimental results confirm that our method outperforms existing approaches in reducing bias, making it a valuable contribution to efforts towards more ethical AI systems.
Abstract:Recent advancements in Vehicle-to-Everything (V2X) technologies have enabled autonomous vehicles to share sensing information to see through occlusions, greatly boosting the perception capability. However, there are no real-world datasets to facilitate the real V2X cooperative perception research -- existing datasets either only support Vehicle-to-Infrastructure cooperation or Vehicle-to-Vehicle cooperation. In this paper, we propose a dataset that has a mixture of multiple vehicles and smart infrastructure simultaneously to facilitate the V2X cooperative perception development with multi-modality sensing data. Our V2X-Real is collected using two connected automated vehicles and two smart infrastructures, which are all equipped with multi-modal sensors including LiDAR sensors and multi-view cameras. The whole dataset contains 33K LiDAR frames and 171K camera data with over 1.2M annotated bounding boxes of 10 categories in very challenging urban scenarios. According to the collaboration mode and ego perspective, we derive four types of datasets for Vehicle-Centric, Infrastructure-Centric, Vehicle-to-Vehicle, and Infrastructure-to-Infrastructure cooperative perception. Comprehensive multi-class multi-agent benchmarks of SOTA cooperative perception methods are provided. The V2X-Real dataset and benchmark codes will be released.
Abstract:This paper studies how to configure powerful In-Context Demonstration (ICD) sequences for a Large Vision-Language Model (LVLM) to solve Vision-Language tasks through In-Context Learning (ICL). After observing that configuring an ICD sequence is a mirror process of composing a sentence, i.e., just as a sentence can be composed word by word via a Language Model, an ICD sequence can also be configured one by one. Consequently, we introduce an ICD Language Model (ICD-LM) specifically designed to generate effective ICD sequences. This involves creating a dataset of hand-crafted ICD sequences for various query samples and using it to train the ICD-LM. Our approach, diverging from traditional methods in NLP that select and order ICDs separately, enables to simultaneously learn how to select and order ICDs, enhancing the effect of the sequences. Moreover, during data construction, we use the LVLM intended for ICL implementation to validate the strength of each ICD sequence, resulting in a model-specific dataset and the ICD-LM trained by this dataset is also model-specific. We validate our methodology through experiments in Visual Question Answering and Image Captioning, confirming the viability of using a Language Model for ICD configuration. Our comprehensive ablation studies further explore the impact of various dataset construction and ICD-LM development settings on the outcomes. The code is given in https://github.com/ForJadeForest/ICD-LM.