Department of Computer Science, University of Toronto
Abstract:Ensuring safe, comfortable, and efficient navigation is a critical goal for autonomous driving systems. While end-to-end models trained on large-scale datasets excel in common driving scenarios, they often struggle with rare, long-tail events. Recent progress in large language models (LLMs) has introduced enhanced reasoning capabilities, but their computational demands pose challenges for real-time decision-making and precise planning. This paper presents FASIONAD, a novel dual-system framework inspired by the cognitive model "Thinking, Fast and Slow." The fast system handles routine navigation tasks using rapid, data-driven path planning, while the slow system focuses on complex reasoning and decision-making in challenging or unfamiliar situations. A dynamic switching mechanism based on score distribution and feedback allows seamless transitions between the two systems. Visual prompts generated by the fast system enable human-like reasoning in the slow system, which provides high-quality feedback to enhance the fast system's decision-making. To evaluate FASIONAD, we introduce a new benchmark derived from the nuScenes dataset, specifically designed to differentiate fast and slow scenarios. FASIONAD achieves state-of-the-art performance on this benchmark, establishing a new standard for frameworks integrating fast and slow cognitive processes in autonomous driving. This approach paves the way for more adaptive, human-like autonomous driving systems.
Abstract:Despite the impressive capabilities of large language models (LLMs), they currently exhibit two primary limitations, \textbf{\uppercase\expandafter{\romannumeral 1}}: They struggle to \textbf{autonomously solve the real world engineering problem}. \textbf{\uppercase\expandafter{\romannumeral 2}}: They remain \textbf{challenged in reasoning through complex logic problems}. To address these challenges, we developed the \textsc{Infant Agent}, integrating task-aware functions, operators, a hierarchical management system, and a memory retrieval mechanism. Together, these components enable large language models to sustain extended reasoning processes and handle complex, multi-step tasks efficiently, all while significantly reducing API costs. Using the \textsc{Infant Agent}, GPT-4o's accuracy on the SWE-bench-lite dataset rises from $\mathbf{0.33\%}$ to $\mathbf{30\%}$, and in the AIME-2024 mathematics competition, it increases GPT-4o's accuracy from $\mathbf{13.3\%}$ to $\mathbf{37\%}$.
Abstract:Recently, large language models (LLMs) have achieved significant progress in automated code generation. Despite their strong instruction-following capabilities, these models frequently struggled to align with user intent in coding scenarios. In particular, they were hampered by datasets that lacked diversity and failed to address specialized tasks or edge cases. Furthermore, challenges in supervised fine-tuning (SFT) and reinforcement learning from human feedback (RLHF) led to failures in generating precise, human-intent-aligned code. To tackle these challenges and improve the code generation performance for automated programming systems, we propose Feedback-driven Adaptive Long/short-term memory reinforced Coding Optimization (i.e., FALCON). FALCON is structured into two hierarchical levels. From the global level, long-term memory improves code quality by retaining and applying learned knowledge. At the local level, short-term memory allows for the incorporation of immediate feedback from compilers and AI systems. Additionally, we introduce meta-reinforcement learning with feedback rewards to solve the global-local bi-level optimization problem and enhance the model's adaptability across diverse code generation tasks. Extensive experiments demonstrate that our technique achieves state-of-the-art performance, leading other reinforcement learning methods by more than 4.5 percentage points on the MBPP benchmark and 6.1 percentage points on the Humaneval benchmark. The open-sourced code is publicly available at https://github.com/titurte/FALCON.
Abstract:Navigating complex traffic environments has been significantly enhanced by advancements in intelligent technologies, enabling accurate environment perception and trajectory prediction for automated vehicles. However, existing research often neglects the consideration of the joint reasoning of scenario agents and lacks interpretability in trajectory prediction models, thereby limiting their practical application in real-world scenarios. To this purpose, an explainability-oriented trajectory prediction model is designed in this work, named Explainable Conditional Diffusion based Multimodal Trajectory Prediction Traj-Explainer, to retrieve the influencing factors of prediction and help understand the intrinsic mechanism of prediction. In Traj-Explainer, a modified conditional diffusion is well designed to capture the scenario multimodal trajectory pattern, and meanwhile, a modified Shapley Value model is assembled to rationally learn the importance of the global and scenario features. Numerical experiments are carried out by several trajectory prediction datasets, including Waymo, NGSIM, HighD, and MoCAD datasets. Furthermore, we evaluate the identified input factors which indicates that they are in agreement with the human driving experience, indicating the capability of the proposed model in appropriately learning the prediction. Code available in our open-source repository: \url{https://anonymous.4open.science/r/Interpretable-Prediction}.
Abstract:Large language models (LLMs) with long-context processing are still challenging because of their implementation complexity, training efficiency and data sparsity. To address this issue, a new paradigm named Online Long-context Processing (OLP) is proposed when we process a document of unlimited length, which typically occurs in the information reception and organization of diverse streaming media such as automated news reporting, live e-commerce, and viral short videos. Moreover, a dilemma was often encountered when we tried to select the most suitable LLM from a large number of LLMs amidst explosive growth aiming for outstanding performance, affordable prices, and short response delays. In view of this, we also develop Role Reinforcement Learning (Role-RL) to automatically deploy different LLMs in their respective roles within the OLP pipeline according to their actual performance. Extensive experiments are conducted on our OLP-MINI dataset and it is found that OLP with Role-RL framework achieves OLP benchmark with an average recall rate of 93.2% and the LLM cost saved by 79.4%. The code and dataset are publicly available at: https://anonymous.4open.science/r/Role-RL.
Abstract:Large language models (LLMs) have made significant advances in the field of natural language processing, but they still face challenges such as continuous decision-making. In this research, we propose a novel framework by integrating iterative feedback, reflective mechanisms, and a memory optimization mechanism based on the Ebbinghaus forgetting curve, it significantly enhances the agents' capabilities in handling multi-tasking and long-span information.
Abstract:As large language models (LLMs) improve their capabilities in handling complex tasks, the issues of computational cost and efficiency due to long prompts are becoming increasingly prominent. To accelerate model inference and reduce costs, we propose an innovative prompt compression framework called LanguaShrink. Inspired by the observation that LLM performance depends on the density and position of key information in the input prompts, LanguaShrink leverages psycholinguistic principles and the Ebbinghaus memory curve to achieve task-agnostic prompt compression. This effectively reduces prompt length while preserving essential information. We referred to the training method of OpenChat.The framework introduces part-of-speech priority compression and data distillation techniques, using smaller models to learn compression targets and employing a KL-regularized reinforcement learning strategy for training.\cite{wang2023openchat} Additionally, we adopt a chunk-based compression algorithm to achieve adjustable compression rates. We evaluate our method on multiple datasets, including LongBench, ZeroScrolls, Arxiv Articles, and a newly constructed novel test set. Experimental results show that LanguaShrink maintains semantic similarity while achieving up to 26 times compression. Compared to existing prompt compression methods, LanguaShrink improves end-to-end latency by 1.43 times.
Abstract:Large language models (LLMs) have shown success in handling simple games with imperfect information and enabling multi-agent coordination, but their ability to facilitate practical collaboration against other agents in complex, imperfect information environments, especially in a non-English environment, still needs to be explored. This study investigates the applicability of knowledge acquired by open-source and API-based LLMs to sophisticated text-based games requiring agent collaboration under imperfect information, comparing their performance to established baselines using other types of agents. We propose a Theory of Mind (ToM) planning technique that allows LLM agents to adapt their strategy against various adversaries using only game rules, current state, and historical context as input. An external tool was incorporated to mitigate the challenge of dynamic and extensive action spaces in this card game. Our results show that although a performance gap exists between current LLMs and state-of-the-art reinforcement learning (RL) models, LLMs demonstrate ToM capabilities in this game setting. It consistently improves their performance against opposing agents, suggesting their ability to understand the actions of allies and adversaries and establish collaboration with allies. To encourage further research and understanding, we have made our codebase openly accessible.
Abstract:Over the last decade, there has been increasing interest in autonomous driving systems. Reinforcement Learning (RL) shows great promise for training autonomous driving controllers, being able to directly optimize a combination of criteria such as efficiency comfort, and stability. However, RL- based controllers typically offer no safety guarantees, making their readiness for real deployment questionable. In this paper, we propose SECRM-2D (the Safe, Efficient and Comfortable RL- based driving Model with Lane-Changing), an RL autonomous driving controller (both longitudinal and lateral) that balances optimization of efficiency and comfort and follows a fixed route, while being subject to hard analytic safety constraints. The aforementioned safety constraints are derived from the criterion that the follower vehicle must have sufficient headway to be able to avoid a crash if the leader vehicle brakes suddenly. We evaluate SECRM-2D against several learning and non-learning baselines in simulated test scenarios, including freeway driving, exiting, merging, and emergency braking. Our results confirm that representative previously-published RL AV controllers may crash in both training and testing, even if they are optimizing a safety objective. By contrast, our controller SECRM-2D is successful in avoiding crashes during both training and testing, improves over the baselines in measures of efficiency and comfort, and is more faithful in following the prescribed route. In addition, we achieve a good theoretical understanding of the longitudinal steady-state of a collection of SECRM-2D vehicles.
Abstract:Recent advancements in large language models (LLMs) have unlocked the potential for generating high-quality game commentary. However, producing insightful and engaging commentary for complex games with incomplete information remains a significant challenge. In this paper, we introduce a novel commentary method that combine Reinforcement Learning (RL) and LLMs, tailored specifically for the Chinese card game \textit{Guandan}. Our system leverages RL to generate intricate card-playing scenarios and employs LLMs to generate corresponding commentary text, effectively emulating the strategic analysis and narrative prowess of professional commentators. The framework comprises a state commentary guide, a Theory of Mind (ToM)-based strategy analyzer, and a style retrieval module, which seamlessly collaborate to deliver detailed and context-relevant game commentary in the Chinese language environment. We empower LLMs with ToM capabilities and refine both retrieval and information filtering mechanisms. This facilitates the generation of personalized commentary content. Our experimental results showcase the substantial enhancement in performance achieved by the proposed commentary framework when applied to open-source LLMs, surpassing the performance of GPT-4 across multiple evaluation metrics.