Abstract:Traditional Reinforcement Learning (RL) suffers from replicating human-like behaviors, generalizing effectively in multi-agent scenarios, and overcoming inherent interpretability issues.These tasks are compounded when deep environment understanding, agent coordination and dynamic optimization are required. While Large Language Model (LLM) enhanced methods have shown promise in generalization and interoperability, they often neglect necessary multi-agent coordination. Therefore, we introduce the Cascading Cooperative Multi-agent (CCMA) framework, integrating RL for individual interactions, a fine-tuned LLM for regional cooperation, a reward function for global optimization, and the Retrieval-augmented Generation mechanism to dynamically optimize decision-making across complex driving scenarios. Our experiments demonstrate that the CCMA outperforms existing RL methods, demonstrating significant improvements in both micro and macro-level performance in complex driving environments.
Abstract:With the advancement of autonomous driving, ensuring safety during motion planning and navigation is becoming more and more important. However, most end-to-end planning methods suffer from a lack of safety. This research addresses the safety issue in the control optimization problem of autonomous driving, formulated as Constrained Markov Decision Processes (CMDPs). We propose a novel, model-based approach for policy optimization, utilizing a conditional Value-at-Risk based Soft Actor Critic to manage constraints in complex, high-dimensional state spaces effectively. Our method introduces a worst-case actor to guide safe exploration, ensuring rigorous adherence to safety requirements even in unpredictable scenarios. The policy optimization employs the Augmented Lagrangian method and leverages latent diffusion models to predict and simulate future trajectories. This dual approach not only aids in navigating environments safely but also refines the policy's performance by integrating distribution modeling to account for environmental uncertainties. Empirical evaluations conducted in both simulated and real environment demonstrate that our approach outperforms existing methods in terms of safety, efficiency, and decision-making capabilities.