Abstract:Cooperative perception enabled by Vehicle-to-Everything (V2X) communication holds significant promise for enhancing the perception capabilities of autonomous vehicles, allowing them to overcome occlusions and extend their field of view. However, existing research predominantly relies on simulated environments or static datasets, leaving the feasibility and effectiveness of V2X cooperative perception especially for intermediate fusion in real-world scenarios largely unexplored. In this work, we introduce V2X-ReaLO, an open online cooperative perception framework deployed on real vehicles and smart infrastructure that integrates early, late, and intermediate fusion methods within a unified pipeline and provides the first practical demonstration of online intermediate fusion's feasibility and performance under genuine real-world conditions. Additionally, we present an open benchmark dataset specifically designed to assess the performance of online cooperative perception systems. This new dataset extends V2X-Real dataset to dynamic, synchronized ROS bags and provides 25,028 test frames with 6,850 annotated key frames in challenging urban scenarios. By enabling real-time assessments of perception accuracy and communication lantency under dynamic conditions, V2X-ReaLO sets a new benchmark for advancing and optimizing cooperative perception systems in real-world applications. The codes and datasets will be released to further advance the field.
Abstract:Colored point cloud becomes a fundamental representation in the realm of 3D vision. Effective Point Cloud Compression (PCC) is urgently needed due to huge amount of data. In this paper, we propose an end-to-end Deep Joint Geometry and Attribute point cloud Compression (Deep-JGAC) framework for dense colored point clouds, which exploits the correlation between the geometry and attribute for high compression efficiency. Firstly, we propose a flexible Deep-JGAC framework, where the geometry and attribute sub-encoders are compatible to either learning or non-learning based geometry and attribute encoders. Secondly, we propose an attribute-assisted deep geometry encoder that enhances the geometry latent representation with the help of attribute, where the geometry decoding remains unchanged. Moreover, Attribute Information Fusion Module (AIFM) is proposed to fuse attribute information in geometry coding. Thirdly, to solve the mismatch between the point cloud geometry and attribute caused by the geometry compression distortion, we present an optimized re-colorization module to attach the attribute to the geometrically distorted point cloud for attribute coding. It enhances the colorization and lowers the computational complexity. Extensive experimental results demonstrate that in terms of the geometry quality metric D1-PSNR, the proposed Deep-JGAC achieves an average of 82.96%, 36.46%, 41.72%, and 31.16% bit-rate reductions as compared to the state-of-the-art G-PCC, V-PCC, GRASP, and PCGCv2, respectively. In terms of perceptual joint quality metric MS-GraphSIM, the proposed Deep-JGAC achieves an average of 48.72%, 14.67%, and 57.14% bit-rate reductions compared to the G-PCC, V-PCC, and IT-DL-PCC, respectively. The encoding/decoding time costs are also reduced by 94.29%/24.70%, and 96.75%/91.02% on average as compared with the V-PCC and IT-DL-PCC.
Abstract:Cooperative perception has attracted wide attention given its capability to leverage shared information across connected automated vehicles (CAVs) and smart infrastructures to address sensing occlusion and range limitation issues. However, existing research overlooks the fragile multi-sensor correlations in multi-agent settings, as the heterogeneous agent sensor measurements are highly susceptible to environmental factors, leading to weakened inter-agent sensor interactions. The varying operational conditions and other real-world factors inevitably introduce multifactorial noise and consequentially lead to multi-sensor misalignment, making the deployment of multi-agent multi-modality perception particularly challenging in the real world. In this paper, we propose AgentAlign, a real-world heterogeneous agent cross-modality feature alignment framework, to effectively address these multi-modality misalignment issues. Our method introduces a cross-modality feature alignment space (CFAS) and heterogeneous agent feature alignment (HAFA) mechanism to harmonize multi-modality features across various agents dynamically. Additionally, we present a novel V2XSet-noise dataset that simulates realistic sensor imperfections under diverse environmental conditions, facilitating a systematic evaluation of our approach's robustness. Extensive experiments on the V2X-Real and V2XSet-Noise benchmarks demonstrate that our framework achieves state-of-the-art performance, underscoring its potential for real-world applications in cooperative autonomous driving. The controllable V2XSet-Noise dataset and generation pipeline will be released in the future.
Abstract:Vehicle-to-everything (V2X) technologies offer a promising paradigm to mitigate the limitations of constrained observability in single-vehicle systems. Prior work primarily focuses on single-frame cooperative perception, which fuses agents' information across different spatial locations but ignores temporal cues and temporal tasks (e.g., temporal perception and prediction). In this paper, we focus on temporal perception and prediction tasks in V2X scenarios and design one-step and multi-step communication strategies (when to transmit) as well as examine their integration with three fusion strategies - early, late, and intermediate (what to transmit), providing comprehensive benchmarks with various fusion models (how to fuse). Furthermore, we propose V2XPnP, a novel intermediate fusion framework within one-step communication for end-to-end perception and prediction. Our framework employs a unified Transformer-based architecture to effectively model complex spatiotemporal relationships across temporal per-frame, spatial per-agent, and high-definition map. Moreover, we introduce the V2XPnP Sequential Dataset that supports all V2X cooperation modes and addresses the limitations of existing real-world datasets, which are restricted to single-frame or single-mode cooperation. Extensive experiments demonstrate our framework outperforms state-of-the-art methods in both perception and prediction tasks.
Abstract:Just Recognizable Difference (JRD) represents the minimum visual difference that is detectable by machine vision, which can be exploited to promote machine vision oriented visual signal processing. In this paper, we propose a Deep Transformer based JRD (DT-JRD) prediction model for Video Coding for Machines (VCM), where the accurately predicted JRD can be used reduce the coding bit rate while maintaining the accuracy of machine tasks. Firstly, we model the JRD prediction as a multi-class classification and propose a DT-JRD prediction model that integrates an improved embedding, a content and distortion feature extraction, a multi-class classification and a novel learning strategy. Secondly, inspired by the perception property that machine vision exhibits a similar response to distortions near JRD, we propose an asymptotic JRD loss by using Gaussian Distribution-based Soft Labels (GDSL), which significantly extends the number of training labels and relaxes classification boundaries. Finally, we propose a DT-JRD based VCM to reduce the coding bits while maintaining the accuracy of object detection. Extensive experimental results demonstrate that the mean absolute error of the predicted JRD by the DT-JRD is 5.574, outperforming the state-of-the-art JRD prediction model by 13.1%. Coding experiments shows that comparing with the VVC, the DT-JRD based VCM achieves an average of 29.58% bit rate reduction while maintaining the object detection accuracy.
Abstract:Outdoor images often suffer from severe degradation due to rain, haze, and noise, impairing image quality and challenging high-level tasks. Current image restoration methods struggle to handle complex degradation while maintaining efficiency. This paper introduces a novel image restoration architecture that combines multi-dimensional dynamic attention and self-attention within a U-Net framework. To leverage the global modeling capabilities of transformers and the local modeling capabilities of convolutions, we integrate sole CNNs in the encoder-decoder and sole transformers in the latent layer. Additionally, we design convolutional kernels with selected multi-dimensional dynamic attention to capture diverse degraded inputs efficiently. A transformer block with transposed self-attention further enhances global feature extraction while maintaining efficiency. Extensive experiments demonstrate that our method achieves a better balance between performance and computational complexity across five image restoration tasks: deraining, deblurring, denoising, dehazing, and enhancement, as well as superior performance for high-level vision tasks. The source code will be available at https://github.com/House-yuyu/MDDA-former.
Abstract:Light-Field (LF) image is emerging 4D data of light rays that is capable of realistically presenting spatial and angular information of 3D scene. However, the large data volume of LF images becomes the most challenging issue in real-time processing, transmission, and storage. In this paper, we propose an end-to-end deep LF Image Compression method Using Disentangled Representation and Asymmetrical Strip Convolution (LFIC-DRASC) to improve coding efficiency. Firstly, we formulate the LF image compression problem as learning a disentangled LF representation network and an image encoding-decoding network. Secondly, we propose two novel feature extractors that leverage the structural prior of LF data by integrating features across different dimensions. Meanwhile, disentangled LF representation network is proposed to enhance the LF feature disentangling and decoupling. Thirdly, we propose the LFIC-DRASC for LF image compression, where two Asymmetrical Strip Convolution (ASC) operators, i.e. horizontal and vertical, are proposed to capture long-range correlation in LF feature space. These two ASC operators can be combined with the square convolution to further decouple LF features, which enhances the model ability in representing intricate spatial relationships. Experimental results demonstrate that the proposed LFIC-DRASC achieves an average of 20.5\% bit rate reductions comparing with the state-of-the-art methods.
Abstract:In this paper, we introduce a novel estimator for vision-aided inertial navigation systems (VINS), the Preconditioned Cholesky-based Square Root Information Filter (PC-SRIF). When solving linear systems, employing Cholesky decomposition offers superior efficiency but can compromise numerical stability. Due to this, existing VINS utilizing (Square Root) Information Filters often opt for QR decomposition on platforms where single precision is preferred, avoiding the numerical challenges associated with Cholesky decomposition. While these issues are often attributed to the ill-conditioned information matrix in VINS, our analysis reveals that this is not an inherent property of VINS but rather a consequence of specific parameterizations. We identify several factors that contribute to an ill-conditioned information matrix and propose a preconditioning technique to mitigate these conditioning issues. Building on this analysis, we present PC-SRIF, which exhibits remarkable stability in performing Cholesky decomposition in single precision when solving linear systems in VINS. Consequently, PC-SRIF achieves superior theoretical efficiency compared to alternative estimators. To validate the efficiency advantages and numerical stability of PC-SRIF based VINS, we have conducted well controlled experiments, which provide empirical evidence in support of our theoretical findings. Remarkably, in our VINS implementation, PC-SRIF's runtime is 41% faster than QR-based SRIF.
Abstract:Vision transformers (ViTs) excel in computer vision for modeling long-term dependencies, yet face two key challenges for image quality assessment (IQA): discarding fine details during patch embedding, and requiring extensive training data due to lack of inductive biases. In this study, we propose a Global-Local progressive INTegration network for IQA, called GlintIQA, to address these issues through three key components: 1) Hybrid feature extraction combines ViT-based global feature extractor (VGFE) and convolutional neural networks (CNNs)-based local feature extractor (CLFE) to capture global coarse-grained features and local fine-grained features, respectively. The incorporation of CNNs mitigates the patch-level information loss and inductive bias constraints inherent to ViT architectures. 2) Progressive feature integration leverages diverse kernel sizes in embedding to spatially align coarse- and fine-grained features, and progressively aggregate these features by interactively stacking channel-wise attention and spatial enhancement modules to build effective quality-aware representations. 3) Content similarity-based labeling approach is proposed that automatically assigns quality labels to images with diverse content based on subjective quality scores. This addresses the scarcity of labeled training data in synthetic datasets and bolsters model generalization. The experimental results demonstrate the efficacy of our approach, yielding 5.04% average SROCC gains on cross-authentic dataset evaluations. Moreover, our model and its counterpart pre-trained on the proposed dataset respectively exhibited 5.40% and 13.23% improvements on across-synthetic datasets evaluation. The codes and proposed dataset will be released at https://github.com/XiaoqiWang/GlintIQA.
Abstract:Knowledge distillation plays a key role in compressing the Large Language Models (LLMs), which boosts a small-size student model under large teacher models' guidance. However, existing LLM distillation methods overly rely on student-generated outputs, which may introduce generation errors and misguide the distillation process. Moreover, the distillation loss functions introduced in previous art struggle to align the most informative part due to the complex distribution of LLMs' outputs. To address these problems, we propose a multi-granularity semantic revision method for LLM distillation. At the sequence level, we propose a sequence correction and re-generation (SCRG) strategy. SCRG first calculates the semantic cognitive difference between the teacher and student to detect the error token, then corrects it with the teacher-generated one, and re-generates the sequence to reduce generation errors and enhance generation diversity. At the token level, we design a distribution adaptive clipping Kullback-Leibler (DAC-KL) loss as the distillation objective function. DAC-KL loss exploits a learnable sub-network to adaptively extract semantically dense areas from the teacher's output, avoiding the interference of redundant information in the distillation process. Finally, at the span level, we leverage the span priors of a sequence to compute the probability correlations within spans, and constrain the teacher and student's probability correlations to be consistent, further enhancing the transfer of semantic information. Extensive experiments across different model families with parameters ranging from 0.1B to 13B demonstrate the superiority of our method compared to existing methods.