Lawrence
Abstract:Human-Object Interaction (HOI) detection is a fundamental task in image understanding. While deep-learning-based HOI methods provide high performance in terms of mean Average Precision (mAP), they are computationally expensive and opaque in training and inference processes. An Efficient HOI (EHOI) detector is proposed in this work to strike a good balance between detection performance, inference complexity, and mathematical transparency. EHOI is a two-stage method. In the first stage, it leverages a frozen object detector to localize the objects and extract various features as intermediate outputs. In the second stage, the first-stage outputs predict the interaction type using the XGBoost classifier. Our contributions include the application of error correction codes (ECCs) to encode rare interaction cases, which reduces the model size and the complexity of the XGBoost classifier in the second stage. Additionally, we provide a mathematical formulation of the relabeling and decision-making process. Apart from the architecture, we present qualitative results to explain the functionalities of the feedforward modules. Experimental results demonstrate the advantages of ECC-coded interaction labels and the excellent balance of detection performance and complexity of the proposed EHOI method.
Abstract:As a fundamental task in natural language processing, word embedding converts each word into a representation in a vector space. A challenge with word embedding is that as the vocabulary grows, the vector space's dimension increases and it can lead to a vast model size. Storing and processing word vectors are resource-demanding, especially for mobile edge-devices applications. This paper explores word embedding dimension reduction. To balance computational costs and performance, we propose an efficient and effective weakly-supervised feature selection method, named WordFS. It has two variants, each utilizing novel criteria for feature selection. Experiments conducted on various tasks (e.g., word and sentence similarity and binary and multi-class classification) indicate that the proposed WordFS model outperforms other dimension reduction methods at lower computational costs.
Abstract:Blind Image Quality Assessment (BIQA) is an essential task that estimates the perceptual quality of images without reference. While many BIQA methods employ deep neural networks (DNNs) and incorporate saliency detectors to enhance performance, their large model sizes limit deployment on resource-constrained devices. To address this challenge, we introduce a novel and non-deep-learning BIQA method with a lightweight saliency detection module, called Green Saliency-guided Blind Image Quality Assessment (GSBIQA). It is characterized by its minimal model size, reduced computational demands, and robust performance. Experimental results show that the performance of GSBIQA is comparable with state-of-the-art DL-based methods with significantly lower resource requirements.
Abstract:We introduce GreenCOD, a green method for detecting camouflaged objects, distinct in its avoidance of backpropagation techniques. GreenCOD leverages gradient boosting and deep features extracted from pre-trained Deep Neural Networks (DNNs). Traditional camouflaged object detection (COD) approaches often rely on complex deep neural network architectures, seeking performance improvements through backpropagation-based fine-tuning. However, such methods are typically computationally demanding and exhibit only marginal performance variations across different models. This raises the question of whether effective training can be achieved without backpropagation. Addressing this, our work proposes a new paradigm that utilizes gradient boosting for COD. This approach significantly simplifies the model design, resulting in a system that requires fewer parameters and operations and maintains high performance compared to state-of-the-art deep learning models. Remarkably, our models are trained without backpropagation and achieve the best performance with fewer than 20G Multiply-Accumulate Operations (MACs). This new, more efficient paradigm opens avenues for further exploration in green, backpropagation-free model training.
Abstract:Image saliency detection is crucial in understanding human gaze patterns from visual stimuli. The escalating demand for research in image saliency detection is driven by the growing necessity to incorporate such techniques into various computer vision tasks and to understand human visual systems. Many existing image saliency detection methods rely on deep neural networks (DNNs) to achieve good performance. However, the high computational complexity associated with these approaches impedes their integration with other modules or deployment on resource-constrained platforms, such as mobile devices. To address this need, we propose a novel image saliency detection method named GreenSaliency, which has a small model size, minimal carbon footprint, and low computational complexity. GreenSaliency can be a competitive alternative to the existing deep-learning-based (DL-based) image saliency detection methods with limited computation resources. GreenSaliency comprises two primary steps: 1) multi-layer hybrid feature extraction and 2) multi-path saliency prediction. Experimental results demonstrate that GreenSaliency achieves comparable performance to the state-of-the-art DL-based methods while possessing a considerably smaller model size and significantly reduced computational complexity.
Abstract:Automatic prostate segmentation is an important step in computer-aided diagnosis of prostate cancer and treatment planning. Existing methods of prostate segmentation are based on deep learning models which have a large size and lack of transparency which is essential for physicians. In this paper, a new data-driven 3D prostate segmentation method on MRI is proposed, named PSHop. Different from deep learning based methods, the core methodology of PSHop is a feed-forward encoder-decoder system based on successive subspace learning (SSL). It consists of two modules: 1) encoder: fine to coarse unsupervised representation learning with cascaded VoxelHop units, 2) decoder: coarse to fine segmentation prediction with voxel-wise classification and local refinement. Experiments are conducted on the publicly available ISBI-2013 dataset, as well as on a larger private one. Experimental analysis shows that our proposed PSHop is effective, robust and lightweight in the tasks of prostate gland and zonal segmentation, achieving a Dice Similarity Coefficient (DSC) of 0.873 for the gland segmentation task. PSHop achieves a competitive performance comparatively to other deep learning methods, while keeping the model size and inference complexity an order of magnitude smaller.
Abstract:Prostate Cancer is one of the most frequently occurring cancers in men, with a low survival rate if not early diagnosed. PI-RADS reading has a high false positive rate, thus increasing the diagnostic incurred costs and patient discomfort. Deep learning (DL) models achieve a high segmentation performance, although require a large model size and complexity. Also, DL models lack of feature interpretability and are perceived as ``black-boxes" in the medical field. PCa-RadHop pipeline is proposed in this work, aiming to provide a more transparent feature extraction process using a linear model. It adopts the recently introduced Green Learning (GL) paradigm, which offers a small model size and low complexity. PCa-RadHop consists of two stages: Stage-1 extracts data-driven radiomics features from the bi-parametric Magnetic Resonance Imaging (bp-MRI) input and predicts an initial heatmap. To reduce the false positive rate, a subsequent stage-2 is introduced to refine the predictions by including more contextual information and radiomics features from each already detected Region of Interest (ROI). Experiments on the largest publicly available dataset, PI-CAI, show a competitive performance standing of the proposed method among other deep DL models, achieving an area under the curve (AUC) of 0.807 among a cohort of 1,000 patients. Moreover, PCa-RadHop maintains orders of magnitude smaller model size and complexity.
Abstract:In this work, we aim to predict the survival time (ST) of glioblastoma (GBM) patients undergoing different treatments based on preoperative magnetic resonance (MR) scans. The personalized and precise treatment planning can be achieved by comparing the ST of different treatments. It is well established that both the current status of the patient (as represented by the MR scans) and the choice of treatment are the cause of ST. While previous related MR-based glioblastoma ST studies have focused only on the direct mapping of MR scans to ST, they have not included the underlying causal relationship between treatments and ST. To address this limitation, we propose a treatment-conditioned regression model for glioblastoma ST that incorporates treatment information in addition to MR scans. Our approach allows us to effectively utilize the data from all of the treatments in a unified manner, rather than having to train separate models for each of the treatments. Furthermore, treatment can be effectively injected into each convolutional layer through the adaptive instance normalization we employ. We evaluate our framework on the BraTS20 ST prediction task. Three treatment options are considered: Gross Total Resection (GTR), Subtotal Resection (STR), and no resection. The evaluation results demonstrate the effectiveness of injecting the treatment for estimating GBM survival.
Abstract:As a fundamental tool for natural language processing (NLP), the part-of-speech (POS) tagger assigns the POS label to each word in a sentence. A novel lightweight POS tagger based on word embeddings is proposed and named GWPT (green word-embedding-based POS tagger) in this work. Following the green learning (GL) methodology, GWPT contains three modules in cascade: 1) representation learning, 2) feature learning, and 3) decision learning modules. The main novelty of GWPT lies in representation learning. It uses non-contextual or contextual word embeddings, partitions embedding dimension indices into low-, medium-, and high-frequency sets, and represents them with different N-grams. It is shown by experimental results that GWPT offers state-of-the-art accuracies with fewer model parameters and significantly lower computational complexity in both training and inference as compared with deep-learning-based methods.
Abstract:AI algorithms at the edge demand smaller model sizes and lower computational complexity. To achieve these objectives, we adopt a green learning (GL) paradigm rather than the deep learning paradigm. GL has three modules: 1) unsupervised representation learning, 2) supervised feature learning, and 3) supervised decision learning. We focus on the second module in this work. In particular, we derive new discriminant features from proper linear combinations of input features, denoted by x, obtained in the first module. They are called complementary and raw features, respectively. Along this line, we present a novel supervised learning method to generate highly discriminant complementary features based on the least-squares normal transform (LNT). LNT consists of two steps. First, we convert a C-class classification problem to a binary classification problem. The two classes are assigned with 0 and 1, respectively. Next, we formulate a least-squares regression problem from the N-dimensional (N-D) feature space to the 1-D output space, and solve the least-squares normal equation to obtain one N-D normal vector, denoted by a1. Since one normal vector is yielded by one binary split, we can obtain M normal vectors with M splits. Then, Ax is called an LNT of x, where transform matrix A in R^{M by N} by stacking aj^T, j=1, ..., M, and the LNT, Ax, can generate M new features. The newly generated complementary features are shown to be more discriminant than the raw features. Experiments show that the classification performance can be improved by these new features.