Abstract:With the rapid development of deep learning, object detectors have demonstrated impressive performance; however, vulnerabilities still exist in certain scenarios. Current research exploring the vulnerabilities using adversarial patches often struggles to balance the trade-off between attack effectiveness and visual quality. To address this problem, we propose a novel framework of patch attack from semantic perspective, which we refer to as AdvLogo. Based on the hypothesis that every semantic space contains an adversarial subspace where images can cause detectors to fail in recognizing objects, we leverage the semantic understanding of the diffusion denoising process and drive the process to adversarial subareas by perturbing the latent and unconditional embeddings at the last timestep. To mitigate the distribution shift that exposes a negative impact on image quality, we apply perturbation to the latent in frequency domain with the Fourier Transform. Experimental results demonstrate that AdvLogo achieves strong attack performance while maintaining high visual quality.
Abstract:Large Language Models (LLMs) have showcased exceptional capabilities in various domains, attracting significant interest from both academia and industry. Despite their impressive performance, the substantial size and computational demands of LLMs pose considerable challenges for practical deployment, particularly in environments with limited resources. The endeavor to compress language models while maintaining their accuracy has become a focal point of research. Among the various methods, knowledge distillation has emerged as an effective technique to enhance inference speed without greatly compromising performance. This paper presents a thorough survey from three aspects: method, evaluation, and application, exploring knowledge distillation techniques tailored specifically for LLMs. Specifically, we divide the methods into white-box KD and black-box KD to better illustrate their differences. Furthermore, we also explored the evaluation tasks and distillation effects between different distillation methods, and proposed directions for future research. Through in-depth understanding of the latest advancements and practical applications, this survey provides valuable resources for researchers, paving the way for sustained progress in this field.
Abstract:We introduce GreenCOD, a green method for detecting camouflaged objects, distinct in its avoidance of backpropagation techniques. GreenCOD leverages gradient boosting and deep features extracted from pre-trained Deep Neural Networks (DNNs). Traditional camouflaged object detection (COD) approaches often rely on complex deep neural network architectures, seeking performance improvements through backpropagation-based fine-tuning. However, such methods are typically computationally demanding and exhibit only marginal performance variations across different models. This raises the question of whether effective training can be achieved without backpropagation. Addressing this, our work proposes a new paradigm that utilizes gradient boosting for COD. This approach significantly simplifies the model design, resulting in a system that requires fewer parameters and operations and maintains high performance compared to state-of-the-art deep learning models. Remarkably, our models are trained without backpropagation and achieve the best performance with fewer than 20G Multiply-Accumulate Operations (MACs). This new, more efficient paradigm opens avenues for further exploration in green, backpropagation-free model training.
Abstract:In the dynamic realms of machine learning and deep learning, the robustness and reliability of models are paramount, especially in critical real-world applications. A fundamental challenge in this sphere is managing Out-of-Distribution (OOD) samples, significantly increasing the risks of model misclassification and uncertainty. Our work addresses this challenge by enhancing the detection and management of OOD samples in neural networks. We introduce OOD-R (Out-of-Distribution-Rectified), a meticulously curated collection of open-source datasets with enhanced noise reduction properties. In-Distribution (ID) noise in existing OOD datasets can lead to inaccurate evaluation of detection algorithms. Recognizing this, OOD-R incorporates noise filtering technologies to refine the datasets, ensuring a more accurate and reliable evaluation of OOD detection algorithms. This approach not only improves the overall quality of data but also aids in better distinguishing between OOD and ID samples, resulting in up to a 2.5\% improvement in model accuracy and a minimum 3.2\% reduction in false positives. Furthermore, we present ActFun, an innovative method that fine-tunes the model's response to diverse inputs, thereby improving the stability of feature extraction and minimizing specificity issues. ActFun addresses the common problem of model overconfidence in OOD detection by strategically reducing the influence of hidden units, which enhances the model's capability to estimate OOD uncertainty more accurately. Implementing ActFun in the OOD-R dataset has led to significant performance enhancements, including an 18.42\% increase in AUROC of the GradNorm method and a 16.93\% decrease in FPR95 of the Energy method. Overall, our research not only advances the methodologies in OOD detection but also emphasizes the importance of dataset integrity for accurate algorithm evaluation.
Abstract:Learning generalized representations from limited training samples is crucial for applying deep neural networks in low-resource scenarios. Recently, methods based on Contrastive Language-Image Pre-training (CLIP) have exhibited promising performance in few-shot adaptation tasks. To avoid catastrophic forgetting and overfitting caused by few-shot fine-tuning, existing works usually freeze the parameters of CLIP pre-trained on large-scale datasets, overlooking the possibility that some parameters might not be suitable for downstream tasks. To this end, we revisit CLIP's visual encoder with a specific focus on its distinctive attention pooling layer, which performs a spatial weighted-sum of the dense feature maps. Given that dense feature maps contain meaningful semantic information, and different semantics hold varying importance for diverse downstream tasks (such as prioritizing semantics like ears and eyes in pet classification tasks rather than side mirrors), using the same weighted-sum operation for dense features across different few-shot tasks might not be appropriate. Hence, we propose fine-tuning the parameters of the attention pooling layer during the training process to encourage the model to focus on task-specific semantics. In the inference process, we perform residual blending between the features pooled by the fine-tuned and the original attention pooling layers to incorporate both the few-shot knowledge and the pre-trained CLIP's prior knowledge. We term this method as Semantic-Aware FinE-tuning (SAFE). SAFE is effective in enhancing the conventional few-shot CLIP and is compatible with the existing adapter approach (termed SAFE-A).
Abstract:Practical object detection application can lose its effectiveness on image inputs with natural distribution shifts. This problem leads the research community to pay more attention on the robustness of detectors under Out-Of-Distribution (OOD) inputs. Existing works construct datasets to benchmark the detector's OOD robustness for a specific application scenario, e.g., Autonomous Driving. However, these datasets lack universality and are hard to benchmark general detectors built on common tasks such as COCO. To give a more comprehensive robustness assessment, we introduce COCO-O(ut-of-distribution), a test dataset based on COCO with 6 types of natural distribution shifts. COCO-O has a large distribution gap with training data and results in a significant 55.7% relative performance drop on a Faster R-CNN detector. We leverage COCO-O to conduct experiments on more than 100 modern object detectors to investigate if their improvements are credible or just over-fitting to the COCO test set. Unfortunately, most classic detectors in early years do not exhibit strong OOD generalization. We further study the robustness effect on recent breakthroughs of detector's architecture design, augmentation and pre-training techniques. Some empirical findings are revealed: 1) Compared with detection head or neck, backbone is the most important part for robustness; 2) An end-to-end detection transformer design brings no enhancement, and may even reduce robustness; 3) Large-scale foundation models have made a great leap on robust object detection. We hope our COCO-O could provide a rich testbed for robustness study of object detection. The dataset will be available at https://github.com/alibaba/easyrobust/tree/main/benchmarks/coco_o.
Abstract:A novel learning solution to image steganalysis based on the green learning paradigm, called Green Steganalyzer (GS), is proposed in this work. GS consists of three modules: 1) pixel-based anomaly prediction, 2) embedding location detection, and 3) decision fusion for image-level detection. In the first module, GS decomposes an image into patches, adopts Saab transforms for feature extraction, and conducts self-supervised learning to predict an anomaly score of their center pixel. In the second module, GS analyzes the anomaly scores of a pixel and its neighborhood to find pixels of higher embedding probabilities. In the third module, GS focuses on pixels of higher embedding probabilities and fuses their anomaly scores to make final image-level classification. Compared with state-of-the-art deep-learning models, GS achieves comparable detection performance against S-UNIWARD, WOW and HILL steganography schemes with significantly lower computational complexity and a smaller model size, making it attractive for mobile/edge applications. Furthermore, GS is mathematically transparent because of its modular design.
Abstract:It is widely reported that deep generative models can classify out-of-distribution (OOD) samples as in-distribution with high confidence. In this work, we propose a hypothesis that this phenomenon is due to the reconstruction task, which can cause the generative model to focus too much on low-level features and not enough on semantic information. To address this issue, we introduce SR-OOD, an OOD detection framework that utilizes sample repairing to encourage the generative model to learn more than just an identity map. By focusing on semantics, our framework improves OOD detection performance without external data and label information. Our experimental results demonstrate the competitiveness of our approach in detecting OOD samples.
Abstract:Recent studies have shown that higher accuracy on ImageNet usually leads to better robustness against different corruptions. Therefore, in this paper, instead of following the traditional research paradigm that investigates new out-of-distribution corruptions or perturbations deep models may encounter, we conduct model debugging in in-distribution data to explore which object attributes a model may be sensitive to. To achieve this goal, we create a toolkit for object editing with controls of backgrounds, sizes, positions, and directions, and create a rigorous benchmark named ImageNet-E(diting) for evaluating the image classifier robustness in terms of object attributes. With our ImageNet-E, we evaluate the performance of current deep learning models, including both convolutional neural networks and vision transformers. We find that most models are quite sensitive to attribute changes. A small change in the background can lead to an average of 9.23\% drop on top-1 accuracy. We also evaluate some robust models including both adversarially trained models and other robust trained models and find that some models show worse robustness against attribute changes than vanilla models. Based on these findings, we discover ways to enhance attribute robustness with preprocessing, architecture designs, and training strategies. We hope this work can provide some insights to the community and open up a new avenue for research in robust computer vision. The code and dataset are available at https://github.com/alibaba/easyrobust.
Abstract:In a transfer-based attack against Automatic Speech Recognition (ASR) systems, attacks are unable to access the architecture and parameters of the target model. Existing attack methods are mostly investigated in voice assistant scenarios with restricted voice commands, prohibiting their applicability to more general ASR related applications. To tackle this challenge, we propose a novel contextualized attack with deletion, insertion, and substitution adversarial behaviors, namely TransAudio, which achieves arbitrary word-level attacks based on the proposed two-stage framework. To strengthen the attack transferability, we further introduce an audio score-matching optimization strategy to regularize the training process, which mitigates adversarial example over-fitting to the surrogate model. Extensive experiments and analysis demonstrate the effectiveness of TransAudio against open-source ASR models and commercial APIs.