Abstract:Model library is an effective tool for improving the performance of single-model Out-of-Distribution (OoD) detector, mainly through model selection and detector fusion. However, existing methods in the literature do not provide uncertainty quantification for model selection results. Additionally, the model ensemble process primarily focuses on controlling the True Positive Rate (TPR) while neglecting the False Positive Rate (FPR). In this paper, we emphasize the significance of the proportion of models in the library that identify the test sample as an OoD sample. This proportion holds crucial information and directly influences the error rate of OoD detection.To address this, we propose inverting the commonly-used sequential p-value strategies. We define the rejection region initially and then estimate the error rate. Furthermore, we introduce a novel perspective from change-point detection and propose an approach for proportion estimation with automatic hyperparameter selection. We name the proposed approach as DOS-Storey-based Detector Ensemble (DSDE). Experimental results on CIFAR10 and CIFAR100 demonstrate the effectiveness of our approach in tackling OoD detection challenges. Specifically, the CIFAR10 experiments show that DSDE reduces the FPR from 11.07% to 3.31% compared to the top-performing single-model detector.
Abstract:With the rapid development of deep learning, object detectors have demonstrated impressive performance; however, vulnerabilities still exist in certain scenarios. Current research exploring the vulnerabilities using adversarial patches often struggles to balance the trade-off between attack effectiveness and visual quality. To address this problem, we propose a novel framework of patch attack from semantic perspective, which we refer to as AdvLogo. Based on the hypothesis that every semantic space contains an adversarial subspace where images can cause detectors to fail in recognizing objects, we leverage the semantic understanding of the diffusion denoising process and drive the process to adversarial subareas by perturbing the latent and unconditional embeddings at the last timestep. To mitigate the distribution shift that exposes a negative impact on image quality, we apply perturbation to the latent in frequency domain with the Fourier Transform. Experimental results demonstrate that AdvLogo achieves strong attack performance while maintaining high visual quality.
Abstract:The intersection of physics-based vision and deep learning presents an exciting frontier for advancing computer vision technologies. By leveraging the principles of physics to inform and enhance deep learning models, we can develop more robust and accurate vision systems. Physics-based vision aims to invert the processes to recover scene properties such as shape, reflectance, light distribution, and medium properties from images. In recent years, deep learning has shown promising improvements for various vision tasks, and when combined with physics-based vision, these approaches can enhance the robustness and accuracy of vision systems. This technical report summarizes the outcomes of the Physics-Based Vision Meets Deep Learning (PBDL) 2024 challenge, held in CVPR 2024 workshop. The challenge consisted of eight tracks, focusing on Low-Light Enhancement and Detection as well as High Dynamic Range (HDR) Imaging. This report details the objectives, methodologies, and results of each track, highlighting the top-performing solutions and their innovative approaches.
Abstract:Continual learning requires learning incremental tasks with dynamic data distributions. So far, it has been observed that employing a combination of contrastive loss and distillation loss for training in continual learning yields strong performance. To the best of our knowledge, however, this contrastive continual learning framework lacks convincing theoretical explanations. In this work, we fill this gap by establishing theoretical performance guarantees, which reveal how the performance of the model is bounded by training losses of previous tasks in the contrastive continual learning framework. Our theoretical explanations further support the idea that pre-training can benefit continual learning. Inspired by our theoretical analysis of these guarantees, we propose a novel contrastive continual learning algorithm called CILA, which uses adaptive distillation coefficients for different tasks. These distillation coefficients are easily computed by the ratio between average distillation losses and average contrastive losses from previous tasks. Our method shows great improvement on standard benchmarks and achieves new state-of-the-art performance.
Abstract:Deploying machine learning in open environments presents the challenge of encountering diverse test inputs that differ significantly from the training data. These out-of-distribution samples may exhibit shifts in local or global features compared to the training distribution. The machine learning (ML) community has responded with a number of methods aimed at distinguishing anomalous inputs from original training data. However, the majority of previous studies have primarily focused on the output layer or penultimate layer of pre-trained deep neural networks. In this paper, we propose a novel framework, Multitesting-based Layer-wise Out-of-Distribution (OOD) Detection (MLOD), to identify distributional shifts in test samples at different levels of features through rigorous multiple testing procedure. Our approach distinguishes itself from existing methods as it does not require modifying the structure or fine-tuning of the pre-trained classifier. Through extensive experiments, we demonstrate that our proposed framework can seamlessly integrate with any existing distance-based inspection method while efficiently utilizing feature extractors of varying depths. Our scheme effectively enhances the performance of out-of-distribution detection when compared to baseline methods. In particular, MLOD-Fisher achieves superior performance in general. When trained using KNN on CIFAR10, MLOD-Fisher significantly lowers the false positive rate (FPR) from 24.09% to 7.47% on average compared to merely utilizing the features of the last layer.
Abstract:Unraveling the reasons behind the remarkable success and exceptional generalization capabilities of deep neural networks presents a formidable challenge. Recent insights from random matrix theory, specifically those concerning the spectral analysis of weight matrices in deep neural networks, offer valuable clues to address this issue. A key finding indicates that the generalization performance of a neural network is associated with the degree of heavy tails in the spectrum of its weight matrices. To capitalize on this discovery, we introduce a novel regularization technique, termed Heavy-Tailed Regularization, which explicitly promotes a more heavy-tailed spectrum in the weight matrix through regularization. Firstly, we employ the Weighted Alpha and Stable Rank as penalty terms, both of which are differentiable, enabling the direct calculation of their gradients. To circumvent over-regularization, we introduce two variations of the penalty function. Then, adopting a Bayesian statistics perspective and leveraging knowledge from random matrices, we develop two novel heavy-tailed regularization methods, utilizing Powerlaw distribution and Frechet distribution as priors for the global spectrum and maximum eigenvalues, respectively. We empirically show that heavytailed regularization outperforms conventional regularization techniques in terms of generalization performance.
Abstract:In this work, we propose {\it Fair-CDA}, a fine-grained data augmentation strategy for imposing fairness constraints. We use a feature disentanglement method to extract the features highly related to the sensitive attributes. Then we show that group fairness can be achieved by regularizing the models on transition paths of sensitive features between groups. By adjusting the perturbation strength in the direction of the paths, our proposed augmentation is controllable and auditable. To alleviate the accuracy degradation caused by fairness constraints, we further introduce a calibrated model to impute labels for the augmented data. Our proposed method does not assume any data generative model and ensures good generalization for both accuracy and fairness. Experimental results show that Fair-CDA consistently outperforms state-of-the-art methods on widely-used benchmarks, e.g., Adult, CelebA and MovieLens. Especially, Fair-CDA obtains an 86.3\% relative improvement for fairness while maintaining the accuracy on the Adult dataset. Moreover, we evaluate Fair-CDA in an online recommendation system to demonstrate the effectiveness of our method in terms of accuracy and fairness.
Abstract:Out-of-Distribution (OOD) detection, i.e., identifying whether an input is sampled from a novel distribution other than the training distribution, is a critical task for safely deploying machine learning systems in the open world. Recently, post hoc detection utilizing pre-trained models has shown promising performance and can be scaled to large-scale problems. This advance raises a natural question: Can we leverage the diversity of multiple pre-trained models to improve the performance of post hoc detection methods? In this work, we propose a detection enhancement method by ensembling multiple detection decisions derived from a zoo of pre-trained models. Our approach uses the p-value instead of the commonly used hard threshold and leverages a fundamental framework of multiple hypothesis testing to control the true positive rate of In-Distribution (ID) data. We focus on the usage of model zoos and provide systematic empirical comparisons with current state-of-the-art methods on various OOD detection benchmarks. The proposed ensemble scheme shows consistent improvement compared to single-model detectors and significantly outperforms the current competitive methods. Our method substantially improves the relative performance by 65.40% and 26.96% on the CIFAR10 and ImageNet benchmarks.
Abstract:Recent advances on large-scale pre-training have shown great potentials of leveraging a large set of Pre-Trained Models (PTMs) for improving Out-of-Distribution (OoD) generalization, for which the goal is to perform well on possible unseen domains after fine-tuning on multiple training domains. However, maximally exploiting a zoo of PTMs is challenging since fine-tuning all possible combinations of PTMs is computationally prohibitive while accurate selection of PTMs requires tackling the possible data distribution shift for OoD tasks. In this work, we propose ZooD, a paradigm for PTMs ranking and ensemble with feature selection. Our proposed metric ranks PTMs by quantifying inter-class discriminability and inter-domain stability of the features extracted by the PTMs in a leave-one-domain-out cross-validation manner. The top-K ranked models are then aggregated for the target OoD task. To avoid accumulating noise induced by model ensemble, we propose an efficient variational EM algorithm to select informative features. We evaluate our paradigm on a diverse model zoo consisting of 35 models for various OoD tasks and demonstrate: (i) model ranking is better correlated with fine-tuning ranking than previous methods and up to 9859x faster than brute-force fine-tuning; (ii) OoD generalization after model ensemble with feature selection outperforms the state-of-the-art methods and the accuracy on most challenging task DomainNet is improved from 46.5\% to 50.6\%. Furthermore, we provide the fine-tuning results of 35 PTMs on 7 OoD datasets, hoping to help the research of model zoo and OoD generalization. Code will be available at https://gitee.com/mindspore/models/tree/master/research/cv/zood.
Abstract:Out-of-distribution (OOD) detection is a critical task for ensuring the reliability and safety of deep neural networks in real-world scenarios. Different from most previous OOD detection methods that focus on designing OOD scores or introducing diverse outlier examples to retrain the model, we delve into the obstacle factors in OOD detection from the perspective of typicality and regard the feature's high-probability region of the deep model as the feature's typical set. We propose to rectify the feature into its typical set and calculate the OOD score with the typical features to achieve reliable uncertainty estimation. The feature rectification can be conducted as a {plug-and-play} module with various OOD scores. We evaluate the superiority of our method on both the commonly used benchmark (CIFAR) and the more challenging high-resolution benchmark with large label space (ImageNet). Notably, our approach outperforms state-of-the-art methods by up to 5.11$\%$ in the average FPR95 on the ImageNet benchmark.