Abstract:Thanks to its superior features of fast read/write speed and low power consumption, spin-torque transfer magnetic random access memory (STT-MRAM) has become a promising non-volatile memory (NVM) technology that is suitable for many applications. However, the reliability of STT-MRAM is seriously affected by the variation of the memory fabrication process and the working temperature, and the later will lead to an unknown offset of the channel. Hence, there is a pressing need to develop more effective error correction coding techniques to tackle these imperfections and improve the reliability of STT-MRAM. In this work, we propose, for the first time, the application of deep-learning (DL) based algorithms and techniques to improve the decoding performance of linear block codes with short codeword lengths for STT-MRAM. We formulate the belief propagation (BP) decoding of linear block code as a neural network (NN), and propose a novel neural normalized-offset reliability-based min-sum (NNORB-MS) decoding algorithm. We successfully apply our proposed decoding algorithm to the STT-MRAM channel through channel symmetrization to overcome the channel asymmetry. We also propose an NN-based soft information generation method (SIGM) to take into account the unknown offset of the channel. Simulation results demonstrate that our proposed NNORB-MS decoding algorithm can achieve significant performance gain over both the hard-decision decoding (HDD) and the regular reliability-based min-sum (RB-MS) decoding algorithm, for cases without and with the unknown channel offset. Moreover, the decoder structure and time complexity of the NNORB-MS algorithm remain similar to those of the regular RB-MS algorithm.
Abstract:The NAND flash memory channel is corrupted by different types of noises, such as the data retention noise and the wear-out noise, which lead to unknown channel offset and make the flash memory channel non-stationary. In the literature, machine learning-based methods have been proposed for data detection for flash memory channels. However, these methods require a large number of training samples and labels to achieve a satisfactory performance, which is costly. Furthermore, with a large unknown channel offset, it may be impossible to obtain enough correct labels. In this paper, we reformulate the data detection for the flash memory channel as a transfer learning (TL) problem. We then propose a model-based deep TL (DTL) algorithm for flash memory channel detection. It can effectively reduce the training data size from $10^6$ samples to less than 104 samples. Moreover, we propose an unsupervised domain adaptation (UDA)-based DTL algorithm using moment alignment, which can detect data without any labels. Hence, it is suitable for scenarios where the decoding of error-correcting code fails and no labels can be obtained. Finally, a UDA-based threshold detector is proposed to eliminate the need for a neural network. Both the channel raw error rate analysis and simulation results demonstrate that the proposed DTL-based detection schemes can achieve near-optimal bit error rate (BER) performance with much less training data and/or without using any labels.
Abstract:Spin-torque transfer magnetic random access memory (STT-MRAM) is a promising emerging non-volatile memory (NVM) technology with wide applications. However, the data recovery of STT-MRAM is affected by the diversity of channel raw bit error rate (BER) across different dies caused by process variations, as well as the unknown resistance offset due to temperature change. Therefore, it is critical to develop effective decoding algorithms of error correction codes (ECCs) for STT-MRAM. In this article, we first propose a neural bit-flipping (BF) decoding algorithm, which can share the same trellis representation as the state-of-the-art neural decoding algorithms, such as the neural belief propagation (NBP) and neural offset min-sum (NOMS) algorithm. Hence, a neural network (NN) decoder with a uniform architecture but different NN parameters can realize all these neural decoding algorithms. Based on such a unified NN decoder architecture, we further propose a novel deep-learning (DL)-based adaptive decoding algorithm whose decoding complexity can be adjusted according to the change of the channel conditions of STT-MRAM. Extensive experimental evaluation results demonstrate that the proposed neural decoders can greatly improve the performance over the standard decoders, with similar decoding latency and energy consumption. Moreover, the DL-based adaptive decoder can work well over different channel conditions of STT-MRAM irrespective of the unknown resistance offset, with a 50% reduction of the decoding latency and energy consumption compared to the fixed decoder.
Abstract:The error correcting performance of multi-level-cell (MLC) NAND flash memory is closely related to the block length of error correcting codes (ECCs) and log-likelihood-ratios (LLRs) of the read-voltage thresholds. Driven by this issue, this paper optimizes the read-voltage thresholds for MLC flash memory to improve the decoding performance of ECCs with finite block length. First, through the analysis of channel coding rate (CCR) and decoding error probability under finite block length, we formulate the optimization problem of read-voltage thresholds to minimize the maximum decoding error probability. Second, we develop a cross iterative search (CIS) algorithm to optimize read-voltage thresholds under the perfect knowledge of flash memory channel. However, it is challenging to analytically characterize the voltage distribution under the effect of data retention noise (DRN), since the data retention time (DRT) is hard to be recorded for flash memory in reality. To address this problem, we develop a deep neural network (DNN) aided optimization strategy to optimize the read-voltage thresholds, where a multi-layer perception (MLP) network is employed to learn the relationship between voltage distribution and read-voltage thresholds. Simulation results show that, compared with the existing schemes, the proposed DNN-aided read-voltage threshold optimization strategy with a well-designed LDPC code can not only improve the program-and-erase (PE) endurance but also reduce the read latency.
Abstract:The memory physics induced unknown offset of the channel is a critical and difficult issue to be tackled for many non-volatile memories (NVMs). In this paper, we first propose novel neural network (NN) detectors by using the multilayer perceptron (MLP) network and the recurrent neural network (RNN), which can effectively tackle the unknown offset of the channel. However, compared with the conventional threshold detector, the NN detectors will incur a significant delay of the read latency and more power consumption. Therefore, we further propose a novel dynamic threshold detector (DTD), whose detection threshold can be derived based on the outputs of the proposed NN detectors. In this way, the NN-based detection only needs to be invoked when the error correction code (ECC) decoder fails, or periodically when the system is in the idle state. Thereafter, the threshold detector will still be adopted by using the adjusted detection threshold derived base on the outputs of the NN detector, until a further adjustment of the detection threshold is needed. Simulation results demonstrate that the proposed DTD based on the RNN detection can achieve the error performance of the optimum detector, without the prior knowledge of the channel.