Abstract:Digital twin (DT) has emerged as a promising solution to enhance manufacturing efficiency in industrial Internet of Things (IIoT) networks. To promote the efficiency and trustworthiness of DT for wireless IIoT networks, we propose a blockchain-enabled DT (B-DT) framework that employs deep neural network (DNN) partitioning technique and reputation-based consensus mechanism, wherein the DTs maintained at the gateway side execute DNN inference tasks using the data collected from their associated IIoT devices. First, we employ DNN partitioning technique to offload the top-layer DNN inference tasks to the access point (AP) side, which alleviates the computation burden at the gateway side and thereby improves the efficiency of DNN inference. Second, we propose a reputation-based consensus mechanism that integrates Proof of Work (PoW) and Proof of Stake (PoS). Specifically, the proposed consensus mechanism evaluates the off-chain reputation of each AP according to its computation resource contributions to the DNN inference tasks, and utilizes the off-chain reputation as a stake to adjust the block generation difficulty. Third, we formulate a stochastic optimization problem of communication resource (i.e., partition point) and computation resource allocation (i.e., computation frequency of APs for top-layer DNN inference and block generation) to minimize system latency under the time-varying channel state and long-term constraints of off-chain reputation, and solve the problem using Lyapunov optimization method. Experimental results show that the proposed dynamic DNN partitioning and resource allocation (DPRA) algorithm outperforms the baselines in terms of reducing the overall latency while guaranteeing the trustworthiness of the B-DT system.
Abstract:Adaptive moment estimation (Adam), as a Stochastic Gradient Descent (SGD) variant, has gained widespread popularity in federated learning (FL) due to its fast convergence. However, federated Adam (FedAdam) algorithms suffer from a threefold increase in uplink communication overhead compared to federated SGD (FedSGD) algorithms, which arises from the necessity to transmit both local model updates and first and second moment estimates from distributed devices to the centralized server for aggregation. Driven by this issue, we propose a novel sparse FedAdam algorithm called FedAdam-SSM, wherein distributed devices sparsify the updates of local model parameters and moment estimates and subsequently upload the sparse representations to the centralized server. To further reduce the communication overhead, the updates of local model parameters and moment estimates incorporate a shared sparse mask (SSM) into the sparsification process, eliminating the need for three separate sparse masks. Theoretically, we develop an upper bound on the divergence between the local model trained by FedAdam-SSM and the desired model trained by centralized Adam, which is related to sparsification error and imbalanced data distribution. By minimizing the divergence bound between the model trained by FedAdam-SSM and centralized Adam, we optimize the SSM to mitigate the learning performance degradation caused by sparsification error. Additionally, we provide convergence bounds for FedAdam-SSM in both convex and non-convex objective function settings, and investigate the impact of local epoch, learning rate and sparsification ratio on the convergence rate of FedAdam-SSM. Experimental results show that FedAdam-SSM outperforms baselines in terms of convergence rate (over 1.1$\times$ faster than the sparse FedAdam baselines) and test accuracy (over 14.5\% ahead of the quantized FedAdam baselines).
Abstract:Federated self-supervised learning (FSSL) has recently emerged as a promising paradigm that enables the exploitation of clients' vast amounts of unlabeled data while preserving data privacy. While FSSL offers advantages, its susceptibility to backdoor attacks, a concern identified in traditional federated supervised learning (FSL), has not been investigated. To fill the research gap, we undertake a comprehensive investigation into a backdoor attack paradigm, where unscrupulous clients conspire to manipulate the global model, revealing the vulnerability of FSSL to such attacks. In FSL, backdoor attacks typically build a direct association between the backdoor trigger and the target label. In contrast, in FSSL, backdoor attacks aim to alter the global model's representation for images containing the attacker's specified trigger pattern in favor of the attacker's intended target class, which is less straightforward. In this sense, we demonstrate that existing defenses are insufficient to mitigate the investigated backdoor attacks in FSSL, thus finding an effective defense mechanism is urgent. To tackle this issue, we dive into the fundamental mechanism of backdoor attacks on FSSL, proposing the Embedding Inspector (EmInspector) that detects malicious clients by inspecting the embedding space of local models. In particular, EmInspector assesses the similarity of embeddings from different local models using a small set of inspection images (e.g., ten images of CIFAR100) without specific requirements on sample distribution or labels. We discover that embeddings from backdoored models tend to cluster together in the embedding space for a given inspection image. Evaluation results show that EmInspector can effectively mitigate backdoor attacks on FSSL across various adversary settings. Our code is avaliable at https://github.com/ShuchiWu/EmInspector.
Abstract:Conventional synchronous federated learning (SFL) frameworks suffer from performance degradation in heterogeneous systems due to imbalanced local data size and diverse computing power on the client side. To address this problem, asynchronous FL (AFL) and semi-asynchronous FL have been proposed to recover the performance loss by allowing asynchronous aggregation. However, asynchronous aggregation incurs a new problem of inconsistency between local updates and global updates. Motivated by the issues of conventional SFL and AFL, we first propose a time-driven SFL (T-SFL) framework for heterogeneous systems. The core idea of T-SFL is that the server aggregates the models from different clients, each with varying numbers of iterations, at regular time intervals. To evaluate the learning performance of T-SFL, we provide an upper bound on the global loss function. Further, we optimize the aggregation weights to minimize the developed upper bound. Then, we develop a discriminative model selection (DMS) algorithm that removes local models from clients whose number of iterations falls below a predetermined threshold. In particular, this algorithm ensures that each client's aggregation weight accurately reflects its true contribution to the global model update, thereby improving the efficiency and robustness of the system. To validate the effectiveness of T-SFL with the DMS algorithm, we conduct extensive experiments using several popular datasets including MNIST, Cifar-10, Fashion-MNIST, and SVHN. The experimental results demonstrate that T-SFL with the DMS algorithm can reduce the latency of conventional SFL by 50\%, while achieving an average 3\% improvement in learning accuracy over state-of-the-art AFL algorithms.
Abstract:As an emerging artificial intelligence technology, graph neural networks (GNNs) have exhibited promising performance across a wide range of graph-related applications. However, information exchanges among neighbor nodes in GNN pose new challenges in the resource-constrained scenario, especially in wireless systems. In practical wireless systems, the communication links among nodes are usually unreliable due to wireless fading and receiver noise, consequently resulting in performance degradation of GNNs. To improve the learning performance of GNNs, we aim to maximize the number of long-term average (LTA) communication links by the optimized power control under energy consumption constraints. Using the Lyapunov optimization method, we first transform the intractable long-term problem into a deterministic problem in each time slot by converting the long-term energy constraints into the objective function. In spite of this non-convex combinatorial optimization problem, we address this problem via equivalently solving a sequence of convex feasibility problems together with a greedy based solver. Simulation results demonstrate the superiority of our proposed scheme over the baselines.
Abstract:Zero-shot learning has consistently yielded remarkable progress via modeling nuanced one-to-one visual-attribute correlation. Existing studies resort to refining a uniform mapping function to align and correlate the sample regions and subattributes, ignoring two crucial issues: 1) the inherent asymmetry of attributes; and 2) the unutilized channel information. This paper addresses these issues by introducing a simple yet effective approach, dubbed Dual Expert Distillation Network (DEDN), where two experts are dedicated to coarse- and fine-grained visual-attribute modeling, respectively. Concretely, one coarse expert, namely cExp, has a complete perceptual scope to coordinate visual-attribute similarity metrics across dimensions, and moreover, another fine expert, namely fExp, consists of multiple specialized subnetworks, each corresponds to an exclusive set of attributes. Two experts cooperatively distill from each other to reach a mutual agreement during training. Meanwhile, we further equip DEDN with a newly designed backbone network, i.e., Dual Attention Network (DAN), which incorporates both region and channel attention information to fully exploit and leverage visual semantic knowledge. Experiments on various benchmark datasets indicate a new state-of-the-art.
Abstract:This paper introduces RDA, a pioneering approach designed to address two primary deficiencies prevalent in previous endeavors aiming at stealing pre-trained encoders: (1) suboptimal performances attributed to biased optimization objectives, and (2) elevated query costs stemming from the end-to-end paradigm that necessitates querying the target encoder every epoch. Specifically, we initially Refine the representations of the target encoder for each training sample, thereby establishing a less biased optimization objective before the steal-training phase. This is accomplished via a sample-wise prototype, which consolidates the target encoder's representations for a given sample's various perspectives. Demanding exponentially fewer queries compared to the end-to-end approach, prototypes can be instantiated to guide subsequent query-free training. For more potent efficacy, we develop a multi-relational extraction loss that trains the surrogate encoder to Discriminate mismatched embedding-prototype pairs while Aligning those matched ones in terms of both amplitude and angle. In this way, the trained surrogate encoder achieves state-of-the-art results across the board in various downstream datasets with limited queries. Moreover, RDA is shown to be robust to multiple widely-used defenses.
Abstract:Generalized Zero-shot Learning (GZSL) has yielded remarkable performance by designing a series of unbiased visual-semantics mappings, wherein, the precision relies heavily on the completeness of extracted visual features from both seen and unseen classes. However, as a common practice in GZSL, the pre-trained feature extractor may easily exhibit difficulty in capturing domain-specific traits of the downstream tasks/datasets to provide fine-grained discriminative features, i.e., domain bias, which hinders the overall recognition performance, especially for unseen classes. Recent studies partially address this issue by fine-tuning feature extractors, while may inevitably incur catastrophic forgetting and overfitting issues. In this paper, we propose a simple yet effective Attribute-Aware Representation Rectification framework for GZSL, dubbed $\mathbf{(AR)^{2}}$, to adaptively rectify the feature extractor to learn novel features while keeping original valuable features. Specifically, our method consists of two key components, i.e., Unseen-Aware Distillation (UAD) and Attribute-Guided Learning (AGL). During training, UAD exploits the prior knowledge of attribute texts that are shared by both seen/unseen classes with attention mechanisms to detect and maintain unseen class-sensitive visual features in a targeted manner, and meanwhile, AGL aims to steer the model to focus on valuable features and suppress them to fit noisy elements in the seen classes by attribute-guided representation learning. Extensive experiments on various benchmark datasets demonstrate the effectiveness of our method.
Abstract:Deep learning-based fault diagnosis (FD) approaches require a large amount of training data, which are difficult to obtain since they are located across different entities. Federated learning (FL) enables multiple clients to collaboratively train a shared model with data privacy guaranteed. However, the domain discrepancy and data scarcity problems among clients deteriorate the performance of the global FL model. To tackle these issues, we propose a novel framework called representation encoding-based federated meta-learning (REFML) for few-shot FD. First, a novel training strategy based on representation encoding and meta-learning is developed. It harnesses the inherent heterogeneity among training clients, effectively transforming it into an advantage for out-of-distribution generalization on unseen working conditions or equipment types. Additionally, an adaptive interpolation method that calculates the optimal combination of local and global models as the initialization of local training is proposed. This helps to further utilize local information to mitigate the negative effects of domain discrepancy. As a result, high diagnostic accuracy can be achieved on unseen working conditions or equipment types with limited training data. Compared with the state-of-the-art methods, such as FedProx, the proposed REFML framework achieves an increase in accuracy by 2.17%-6.50% when tested on unseen working conditions of the same equipment type and 13.44%-18.33% when tested on totally unseen equipment types, respectively.
Abstract:With the rapid proliferation of smart mobile devices, federated learning (FL) has been widely considered for application in wireless networks for distributed model training. However, data heterogeneity, e.g., non-independently identically distributions and different sizes of training data among clients, poses major challenges to wireless FL. Limited communication resources complicate the implementation of fair scheduling which is required for training on heterogeneous data, and further deteriorate the overall performance. To address this issue, this paper focuses on performance analysis and optimization for wireless FL, considering data heterogeneity, combined with wireless resource allocation. Specifically, we first develop a closed-form expression for an upper bound on the FL loss function, with a particular emphasis on data heterogeneity described by a dataset size vector and a data divergence vector. Then we formulate the loss function minimization problem, under constraints on long-term energy consumption and latency, and jointly optimize client scheduling, resource allocation, and the number of local training epochs (CRE). Next, via the Lyapunov drift technique, we transform the CRE optimization problem into a series of tractable problems. Extensive experiments on real-world datasets demonstrate that the proposed algorithm outperforms other benchmarks in terms of the learning accuracy and energy consumption.