Abstract:Recent advances in fine-tuning Vision-Language Models (VLMs) have witnessed the success of prompt tuning and adapter tuning, while the classic model fine-tuning on inherent parameters seems to be overlooked. It is believed that fine-tuning the parameters of VLMs with few-shot samples corrupts the pre-trained knowledge since fine-tuning the CLIP model even degrades performance. In this paper, we revisit this viewpoint, and propose a new perspective: fine-tuning the specific parameters instead of all will uncover the power of classic model fine-tuning on VLMs. Through our meticulous study, we propose ClipFit, a simple yet effective method to fine-tune CLIP without introducing any overhead of extra parameters. We demonstrate that by only fine-tuning the specific bias terms and normalization layers, ClipFit can improve the performance of zero-shot CLIP by 7.27\% average harmonic mean accuracy. Lastly, to understand how fine-tuning in CLIPFit affects the pre-trained models, we conducted extensive experimental analyses w.r.t. changes in internal parameters and representations. We found that low-level text bias layers and the first layer normalization layer change much more than other layers. The code is available at \url{https://github.com/minglllli/CLIPFit}.
Abstract:Accurate lesion segmentation in whole-body PET/CT scans is crucial for cancer diagnosis and treatment planning, but limited datasets often hinder the performance of automated segmentation models. In this paper, we explore the potential of leveraging the deep prior from a generative model to serve as a data augmenter for automated lesion segmentation in PET/CT scans. We adapt the DiffTumor method, originally designed for CT images, to generate synthetic PET-CT images with lesions. Our approach trains the generative model on the AutoPET dataset and uses it to expand the training data. We then compare the performance of segmentation models trained on the original and augmented datasets. Our findings show that the model trained on the augmented dataset achieves a higher Dice score, demonstrating the potential of our data augmentation approach. In a nutshell, this work presents a promising direction for improving lesion segmentation in whole-body PET/CT scans with limited datasets, potentially enhancing the accuracy and reliability of cancer diagnostics.
Abstract:Domain-generalized nuclei segmentation refers to the generalizability of models to unseen domains based on knowledge learned from source domains and is challenged by various image conditions, cell types, and stain strategies. Recently, the Segment Anything Model (SAM) has made great success in universal image segmentation by interactive prompt modes (e.g., point and box). Despite its strengths, the original SAM presents limited adaptation to medical images. Moreover, SAM requires providing manual bounding box prompts for each object to produce satisfactory segmentation masks, so it is laborious in nuclei segmentation scenarios. To address these limitations, we propose a domain-generalizable framework for nuclei image segmentation, abbreviated to NuSegDG. Specifically, we first devise a Heterogeneous Space Adapter (HS-Adapter) to learn multi-dimensional feature representations of different nuclei domains by injecting a small number of trainable parameters into the image encoder of SAM. To alleviate the labor-intensive requirement of manual prompts, we introduce a Gaussian-Kernel Prompt Encoder (GKP-Encoder) to generate density maps driven by a single point, which guides segmentation predictions by mixing position prompts and semantic prompts. Furthermore, we present a Two-Stage Mask Decoder (TSM-Decoder) to effectively convert semantic masks to instance maps without the manual demand for morphological shape refinement. Based on our experimental evaluations, the proposed NuSegDG demonstrates state-of-the-art performance in nuclei instance segmentation, exhibiting superior domain generalization capabilities. The source code is available at https://github.com/xq141839/NuSegDG.
Abstract:The Segment Anything Model (SAM) has demonstrated outstanding adaptation to medical image segmentation but still faces three major challenges. Firstly, the huge computational costs of SAM limit its real-world applicability. Secondly, SAM depends on manual annotations (e.g., points, boxes) as prompts, which are laborious and impractical in clinical scenarios. Thirdly, SAM handles all segmentation targets equally, which is suboptimal for diverse medical modalities with inherent heterogeneity. To address these issues, we propose an Efficient Self-Prompting SAM for universal medical image segmentation, named ESP-MedSAM. We devise a Multi-Modal Decoupled Knowledge Distillation (MMDKD) strategy to distil common image knowledge and domain-specific medical knowledge from the foundation model to train a lightweight image encoder and a modality controller. Further, they combine with the additionally introduced Self-Patch Prompt Generator (SPPG) and Query-Decoupled Modality Decoder (QDMD) to construct ESP-MedSAM. Specifically, SPPG aims to generate a set of patch prompts automatically and QDMD leverages a one-to-one strategy to provide an independent decoding channel for every modality. Extensive experiments indicate that ESP-MedSAM outperforms state-of-the-arts in diverse medical imaging segmentation takes, displaying superior zero-shot learning and modality transfer ability. Especially, our framework uses only 31.4% parameters compared to SAM-Base.
Abstract:Recent advances in learning multi-modal representation have witnessed the success in biomedical domains. While established techniques enable handling multi-modal information, the challenges are posed when extended to various clinical modalities and practical modalitymissing setting due to the inherent modality gaps. To tackle these, we propose an innovative Modality-prompted Heterogeneous Graph for Omnimodal Learning (GTP-4o), which embeds the numerous disparate clinical modalities into a unified representation, completes the deficient embedding of missing modality and reformulates the cross-modal learning with a graph-based aggregation. Specially, we establish a heterogeneous graph embedding to explicitly capture the diverse semantic properties on both the modality-specific features (nodes) and the cross-modal relations (edges). Then, we design a modality-prompted completion that enables completing the inadequate graph representation of missing modality through a graph prompting mechanism, which generates hallucination graphic topologies to steer the missing embedding towards the intact representation. Through the completed graph, we meticulously develop a knowledge-guided hierarchical cross-modal aggregation consisting of a global meta-path neighbouring to uncover the potential heterogeneous neighbors along the pathways driven by domain knowledge, and a local multi-relation aggregation module for the comprehensive cross-modal interaction across various heterogeneous relations. We assess the efficacy of our methodology on rigorous benchmarking experiments against prior state-of-the-arts. In a nutshell, GTP-4o presents an initial foray into the intriguing realm of embedding, relating and perceiving the heterogeneous patterns from various clinical modalities holistically via a graph theory. Project page: https://gtp-4-o.github.io/.
Abstract:Recent advancements in large generative models and real-time neural rendering using point-based techniques pave the way for a future of widespread visual data distribution through sharing synthesized 3D assets. However, while standardized methods for embedding proprietary or copyright information, either overtly or subtly, exist for conventional visual content such as images and videos, this issue remains unexplored for emerging generative 3D formats like Gaussian Splatting. We present GaussianStego, a method for embedding steganographic information in the rendering of generated 3D assets. Our approach employs an optimization framework that enables the accurate extraction of hidden information from images rendered using Gaussian assets derived from large models, while maintaining their original visual quality. We conduct preliminary evaluations of our method across several potential deployment scenarios and discuss issues identified through analysis. GaussianStego represents an initial exploration into the novel challenge of embedding customizable, imperceptible, and recoverable information within the renders produced by current 3D generative models, while ensuring minimal impact on the rendered content's quality.
Abstract:3D reconstruction of biological tissues from a collection of endoscopic images is a key to unlock various important downstream surgical applications with 3D capabilities. Existing methods employ various advanced neural rendering techniques for photorealistic view synthesis, but they often struggle to recover accurate 3D representations when only sparse observations are available, which is usually the case in real-world clinical scenarios. To tackle this {sparsity} challenge, we propose a framework leveraging the prior knowledge from multiple foundation models during the reconstruction process, dubbed as \textit{EndoSparse}. Experimental results indicate that our proposed strategy significantly improves the geometric and appearance quality under challenging sparse-view conditions, including using only three views. In rigorous benchmarking experiments against state-of-the-art methods, \textit{EndoSparse} achieves superior results in terms of accurate geometry, realistic appearance, and rendering efficiency, confirming the robustness to sparse-view limitations in endoscopic reconstruction. \textit{EndoSparse} signifies a steady step towards the practical deployment of neural 3D reconstruction in real-world clinical scenarios. Project page: https://endo-sparse.github.io/.
Abstract:The advent of 3D Gaussian Splatting (3D-GS) techniques and their dynamic scene modeling variants, 4D-GS, offers promising prospects for real-time rendering of dynamic surgical scenarios. However, the prerequisite for modeling dynamic scenes by a large number of Gaussian units, the high-dimensional Gaussian attributes and the high-resolution deformation fields, all lead to serve storage issues that hinder real-time rendering in resource-limited surgical equipment. To surmount these limitations, we introduce a Lightweight 4D Gaussian Splatting framework (LGS) that can liberate the efficiency bottlenecks of both rendering and storage for dynamic endoscopic reconstruction. Specifically, to minimize the redundancy of Gaussian quantities, we propose Deformation-Aware Pruning by gauging the impact of each Gaussian on deformation. Concurrently, to reduce the redundancy of Gaussian attributes, we simplify the representation of textures and lighting in non-crucial areas by pruning the dimensions of Gaussian attributes. We further resolve the feature field redundancy caused by the high resolution of 4D neural spatiotemporal encoder for modeling dynamic scenes via a 4D feature field condensation. Experiments on public benchmarks demonstrate efficacy of LGS in terms of a compression rate exceeding 9 times while maintaining the pleasing visual quality and real-time rendering efficiency. LGS confirms a substantial step towards its application in robotic surgical services.
Abstract:U-Net has become a cornerstone in various visual applications such as image segmentation and diffusion probability models. While numerous innovative designs and improvements have been introduced by incorporating transformers or MLPs, the networks are still limited to linearly modeling patterns as well as the deficient interpretability. To address these challenges, our intuition is inspired by the impressive results of the Kolmogorov-Arnold Networks (KANs) in terms of accuracy and interpretability, which reshape the neural network learning via the stack of non-linear learnable activation functions derived from the Kolmogorov-Anold representation theorem. Specifically, in this paper, we explore the untapped potential of KANs in improving backbones for vision tasks. We investigate, modify and re-design the established U-Net pipeline by integrating the dedicated KAN layers on the tokenized intermediate representation, termed U-KAN. Rigorous medical image segmentation benchmarks verify the superiority of U-KAN by higher accuracy even with less computation cost. We further delved into the potential of U-KAN as an alternative U-Net noise predictor in diffusion models, demonstrating its applicability in generating task-oriented model architectures. These endeavours unveil valuable insights and sheds light on the prospect that with U-KAN, you can make strong backbone for medical image segmentation and generation. Project page: https://yes-ukan.github.io/
Abstract:Generative models hold promise for revolutionizing medical education, robot-assisted surgery, and data augmentation for machine learning. Despite progress in generating 2D medical images, the complex domain of clinical video generation has largely remained untapped.This paper introduces \model, an innovative approach to generate medical videos that simulate clinical endoscopy scenes. We present a novel generative model design that integrates a meticulously crafted spatial-temporal video transformer with advanced 2D vision foundation model priors, explicitly modeling spatial-temporal dynamics during video generation. We also pioneer the first public benchmark for endoscopy simulation with video generation models, adapting existing state-of-the-art methods for this endeavor.Endora demonstrates exceptional visual quality in generating endoscopy videos, surpassing state-of-the-art methods in extensive testing. Moreover, we explore how this endoscopy simulator can empower downstream video analysis tasks and even generate 3D medical scenes with multi-view consistency. In a nutshell, Endora marks a notable breakthrough in the deployment of generative AI for clinical endoscopy research, setting a substantial stage for further advances in medical content generation. For more details, please visit our project page: https://endora-medvidgen.github.io/.