Abstract:Among the ever-evolving development of vision-language models, contrastive language-image pretraining (CLIP) has set new benchmarks in many downstream tasks such as zero-shot classifications by leveraging self-supervised contrastive learning on large amounts of text-image pairs. However, its dependency on rigid one-to-one mappings overlooks the complex and often multifaceted relationships between and within texts and images. To this end, we introduce RankCLIP, a novel pretraining method that extends beyond the rigid one-to-one matching framework of CLIP and its variants. By leveraging both in-modal and cross-modal ranking consistency, RankCLIP improves the alignment process, enabling it to capture the nuanced many-to-many relationships between and within each modality. Through comprehensive experiments, we demonstrate the enhanced capability of RankCLIP to effectively improve performance across various downstream tasks, notably achieving significant gains in zero-shot classifications over state-of-the-art methods, underscoring the potential of RankCLIP in further advancing vision-language pretraining.
Abstract:Named Entity Recognition (NER) is a fundamental Natural Language Processing (NLP) task to extract entities from unstructured data. The previous methods for NER were based on machine learning or deep learning. Recently, pre-training models have significantly improved performance on multiple NLP tasks. In this paper, firstly, we introduce the architecture and pre-training tasks of four common pre-training models: BERT, ERNIE, ERNIE2.0-tiny, and RoBERTa. Then, we apply these pre-training models to a NER task by fine-tuning, and compare the effects of the different model architecture and pre-training tasks on the NER task. The experiment results showed that RoBERTa achieved state-of-the-art results on the MSRA-2006 dataset.