Abstract:Modern large language models use a fixed tokenizer to effectively compress text drawn from a source domain. However, applying the same tokenizer to a new target domain often leads to inferior compression, more costly inference, and reduced semantic alignment. To address this deficiency, we introduce Sparse Sinkhorn Token Translation (S2T2). S2T2 trains a tailored tokenizer for the target domain and learns to translate between target and source tokens, enabling more effective reuse of the pre-trained next-source-token predictor. In our experiments with finetuned English language models, S2T2 improves both the perplexity and the compression of out-of-domain protein sequences, outperforming direct finetuning with either the source or target tokenizer. In addition, we find that token translations learned for smaller, less expensive models can be directly transferred to larger, more powerful models to reap the benefits of S2T2 at lower cost.
Abstract:The composition of pretraining data is a key determinant of foundation models' performance, but there is no standard guideline for allocating a limited computational budget across different data sources. Most current approaches either rely on extensive experiments with smaller models or dynamic data adjustments that also require proxy models, both of which significantly increase the workflow complexity and computational overhead. In this paper, we introduce Adaptive Data Optimization (ADO), an algorithm that optimizes data distributions in an online fashion, concurrent with model training. Unlike existing techniques, ADO does not require external knowledge, proxy models, or modifications to the model update. Instead, ADO uses per-domain scaling laws to estimate the learning potential of each domain during training and adjusts the data mixture accordingly, making it more scalable and easier to integrate. Experiments demonstrate that ADO can achieve comparable or better performance than prior methods while maintaining computational efficiency across different computation scales, offering a practical solution for dynamically adjusting data distribution without sacrificing flexibility or increasing costs. Beyond its practical benefits, ADO also provides a new perspective on data collection strategies via scaling laws.
Abstract:Large language models (LLMs) trained on web-scale datasets raise substantial concerns regarding permissible data usage. One major question is whether these models "memorize" all their training data or they integrate many data sources in some way more akin to how a human would learn and synthesize information. The answer hinges, to a large degree, on $\textit{how we define memorization}$. In this work, we propose the Adversarial Compression Ratio (ACR) as a metric for assessing memorization in LLMs -- a given string from the training data is considered memorized if it can be elicited by a prompt shorter than the string itself. In other words, these strings can be "compressed" with the model by computing adversarial prompts of fewer tokens. We outline the limitations of existing notions of memorization and show how the ACR overcomes these challenges by (i) offering an adversarial view to measuring memorization, especially for monitoring unlearning and compliance; and (ii) allowing for the flexibility to measure memorization for arbitrary strings at a reasonably low compute. Our definition serves as a valuable and practical tool for determining when model owners may be violating terms around data usage, providing a potential legal tool and a critical lens through which to address such scenarios. Project page: https://locuslab.github.io/acr-memorization.
Abstract:Among the ever-evolving development of vision-language models, contrastive language-image pretraining (CLIP) has set new benchmarks in many downstream tasks such as zero-shot classifications by leveraging self-supervised contrastive learning on large amounts of text-image pairs. However, its dependency on rigid one-to-one mappings overlooks the complex and often multifaceted relationships between and within texts and images. To this end, we introduce RankCLIP, a novel pretraining method that extends beyond the rigid one-to-one matching framework of CLIP and its variants. By leveraging both in-modal and cross-modal ranking consistency, RankCLIP improves the alignment process, enabling it to capture the nuanced many-to-many relationships between and within each modality. Through comprehensive experiments, we demonstrate the enhanced capability of RankCLIP to effectively improve performance across various downstream tasks, notably achieving significant gains in zero-shot classifications over state-of-the-art methods, underscoring the potential of RankCLIP in further advancing vision-language pretraining.
Abstract:Concept explanation is a popular approach for examining how human-interpretable concepts impact the predictions of a model. However, most existing methods for concept explanations are tailored to specific models. To address this issue, this paper focuses on model-agnostic measures. Specifically, we propose an approach to concept explanations that satisfy three natural axioms: linearity, recursivity, and similarity. We then establish connections with previous concept explanation methods, offering insight into their varying semantic meanings. Experimentally, we demonstrate the utility of the new method by applying it in different scenarios: for model selection, optimizer selection, and model improvement using a kind of prompt editing for zero-shot vision language models.
Abstract:Large language models trained on massive corpora of data from the web can memorize and reproduce sensitive or private data raising both legal and ethical concerns. Unlearning, or tuning models to forget information present in their training data, provides us with a way to protect private data after training. Although several methods exist for such unlearning, it is unclear to what extent they result in models equivalent to those where the data to be forgotten was never learned in the first place. To address this challenge, we present TOFU, a Task of Fictitious Unlearning, as a benchmark aimed at helping deepen our understanding of unlearning. We offer a dataset of 200 diverse synthetic author profiles, each consisting of 20 question-answer pairs, and a subset of these profiles called the forget set that serves as the target for unlearning. We compile a suite of metrics that work together to provide a holistic picture of unlearning efficacy. Finally, we provide a set of baseline results from existing unlearning algorithms. Importantly, none of the baselines we consider show effective unlearning motivating continued efforts to develop approaches for unlearning that effectively tune models so that they truly behave as if they were never trained on the forget data at all.
Abstract:This work studies the neural tangent kernel (NTK) of the deep equilibrium (DEQ) model, a practical ``infinite-depth'' architecture which directly computes the infinite-depth limit of a weight-tied network via root-finding. Even though the NTK of a fully-connected neural network can be stochastic if its width and depth both tend to infinity simultaneously, we show that contrarily a DEQ model still enjoys a deterministic NTK despite its width and depth going to infinity at the same time under mild conditions. Moreover, this deterministic NTK can be found efficiently via root-finding.
Abstract:Deep Boltzmann machines (DBMs), one of the first ``deep'' learning methods ever studied, are multi-layered probabilistic models governed by a pairwise energy function that describes the likelihood of all variables/nodes in the network. In practice, DBMs are often constrained, i.e., via the \emph{restricted} Boltzmann machine (RBM) architecture (which does not permit intra-layer connections), in order to allow for more efficient inference. In this work, we revisit the generic DBM approach, and ask the question: are there other possible restrictions to their design that would enable efficient (approximate) inference? In particular, we develop a new class of restricted model, the monotone DBM, which allows for arbitrary self-connection in each layer, but restricts the \emph{weights} in a manner that guarantees the existence and global uniqueness of a mean-field fixed point. To do this, we leverage tools from the recently-proposed monotone Deep Equilibrium model and show that a particular choice of activation results in a fixed-point iteration that gives a variational mean-field solution. While this approach is still largely conceptual, it is the first architecture that allows for efficient approximate inference in fully-general weight structures for DBMs. We apply this approach to simple deep convolutional Boltzmann architectures and demonstrate that it allows for tasks such as the joint completion and classification of images, within a single deep probabilistic setting, while avoiding the pitfalls of mean-field inference in traditional RBMs.
Abstract:Modern image classification is based upon directly predicting model classes via large discriminative networks, making it difficult to assess the intuitive visual ``features'' that may constitute a classification decision. At the same time, recent works in joint visual language models such as CLIP provide ways to specify natural language descriptions of image classes but typically focus on providing single descriptions for each class. In this work, we demonstrate that an alternative approach, arguably more akin to our understanding of multiple ``visual features'' per class, can also provide compelling performance in the robust few-shot learning setting. In particular, we automatically enumerate multiple visual descriptions of each class -- via a large language model (LLM) -- then use a vision-image model to translate these descriptions to a set of multiple visual features of each image; we finally use sparse logistic regression to select a relevant subset of these features to classify each image. This both provides an ``intuitive'' set of relevant features for each class, and in the few-shot learning setting, outperforms standard approaches such as linear probing. When combined with finetuning, we also show that the method is able to outperform existing state-of-the-art finetuning approaches on both in-distribution and out-of-distribution performance.
Abstract:$k$-means clustering is a well-studied problem due to its wide applicability. Unfortunately, there exist strong theoretical limits on the performance of any algorithm for the $k$-means problem on worst-case inputs. To overcome this barrier, we consider a scenario where "advice" is provided to help perform clustering. Specifically, we consider the $k$-means problem augmented with a predictor that, given any point, returns its cluster label in an approximately optimal clustering up to some, possibly adversarial, error. We present an algorithm whose performance improves along with the accuracy of the predictor, even though na\"{i}vely following the accurate predictor can still lead to a high clustering cost. Thus if the predictor is sufficiently accurate, we can retrieve a close to optimal clustering with nearly optimal runtime, breaking known computational barriers for algorithms that do not have access to such advice. We evaluate our algorithms on real datasets and show significant improvements in the quality of clustering.