Abstract:Large Language Models (LLMs) have showcased exceptional capabilities in various domains, attracting significant interest from both academia and industry. Despite their impressive performance, the substantial size and computational demands of LLMs pose considerable challenges for practical deployment, particularly in environments with limited resources. The endeavor to compress language models while maintaining their accuracy has become a focal point of research. Among the various methods, knowledge distillation has emerged as an effective technique to enhance inference speed without greatly compromising performance. This paper presents a thorough survey from three aspects: method, evaluation, and application, exploring knowledge distillation techniques tailored specifically for LLMs. Specifically, we divide the methods into white-box KD and black-box KD to better illustrate their differences. Furthermore, we also explored the evaluation tasks and distillation effects between different distillation methods, and proposed directions for future research. Through in-depth understanding of the latest advancements and practical applications, this survey provides valuable resources for researchers, paving the way for sustained progress in this field.
Abstract:Heterogeneous federated multi-task learning (HFMTL) is a federated learning technique that combines heterogeneous tasks of different clients to achieve more accurate, comprehensive predictions. In real-world applications, visual and natural language tasks typically require large-scale models to extract high-level abstract features. However, large-scale models cannot be directly applied to existing federated multi-task learning methods. Existing HFML methods also disregard the impact of gradient conflicts on multi-task optimization during the federated aggregation process. In this work, we propose an innovative framework called FedBone, which enables the construction of large-scale models with better generalization from the perspective of server-client split learning and gradient projection. We split the entire model into two components: a large-scale general model (referred to as the general model) on the cloud server and multiple task-specific models (referred to as the client model) on edge clients, solving the problem of insufficient computing power on edge clients. The conflicting gradient projection technique is used to enhance the generalization of the large-scale general model between different tasks. The proposed framework is evaluated on two benchmark datasets and a real ophthalmic dataset. Comprehensive results demonstrate that FedBone efficiently adapts to heterogeneous local tasks of each client and outperforms existing federated learning algorithms in most dense prediction and classification tasks with off-the-shelf computational resources on the client side.