Abstract:Learning representations of user behavior sequences is crucial for various online services, such as online fraudulent transaction detection mechanisms. Graph Neural Networks (GNNs) have been extensively applied to model sequence relationships, and extract information from similar sequences. While user behavior sequence data volume is usually huge for online applications, directly applying GNN models may lead to substantial computational overhead during both the training and inference stages and make it challenging to meet real-time requirements for online services. In this paper, we leverage graph compression techniques to alleviate the efficiency issue. Specifically, we propose a novel unified framework called ECSeq, to introduce graph compression techniques into relation modeling for user sequence representation learning. The key module of ECSeq is sequence relation modeling, which explores relationships among sequences to enhance sequence representation learning, and employs graph compression algorithms to achieve high efficiency and scalability. ECSeq also exhibits plug-and-play characteristics, seamlessly augmenting pre-trained sequence representation models without modifications. Empirical experiments on both sequence classification and regression tasks demonstrate the effectiveness of ECSeq. Specifically, with an additional training time of tens of seconds in total on 100,000+ sequences and inference time preserved within $10^{-4}$ seconds/sample, ECSeq improves the prediction R@P$_{0.9}$ of the widely used LSTM by $\sim 5\%$.
Abstract:Graph contrastive learning (GCL) has emerged as a state-of-the-art strategy for learning representations of diverse graphs including social and biomedical networks. GCL widely uses stochastic graph topology augmentation, such as uniform node dropping, to generate augmented graphs. However, such stochastic augmentations may severely damage the intrinsic properties of a graph and deteriorate the following representation learning process. We argue that incorporating an awareness of cohesive subgraphs during the graph augmentation and learning processes has the potential to enhance GCL performance. To this end, we propose a novel unified framework called CTAug, to seamlessly integrate cohesion awareness into various existing GCL mechanisms. In particular, CTAug comprises two specialized modules: topology augmentation enhancement and graph learning enhancement. The former module generates augmented graphs that carefully preserve cohesion properties, while the latter module bolsters the graph encoder's ability to discern subgraph patterns. Theoretical analysis shows that CTAug can strictly improve existing GCL mechanisms. Empirical experiments verify that CTAug can achieve state-of-the-art performance for graph representation learning, especially for graphs with high degrees. The code is available at https://doi.org/10.5281/zenodo.10594093, or https://github.com/wuyucheng2002/CTAug.