Abstract:Anomaly analysis in surveillance videos is a crucial topic in computer vision. In recent years, multimodal large language models (MLLMs) have outperformed task-specific models in various domains. Although MLLMs are particularly versatile, their abilities to understand anomalous concepts and details are insufficiently studied because of the outdated benchmarks of this field not providing MLLM-style QAs and efficient algorithms to assess the model's open-ended text responses. To fill this gap, we propose a benchmark for crime surveillance video analysis with large models denoted as UCVL, including 1,829 videos and reorganized annotations from the UCF-Crime and UCF-Crime Annotation datasets. We design six types of questions and generate diverse QA pairs. Then we develop detailed instructions and use OpenAI's GPT-4o for accurate assessment. We benchmark eight prevailing MLLMs ranging from 0.5B to 40B parameters, and the results demonstrate the reliability of this bench. Moreover, we finetune LLaVA-OneVision on UCVL's training set. The improvement validates our data's high quality for video anomaly analysis.
Abstract:The hemorrhagic lesion segmentation plays a critical role in ophthalmic diagnosis, directly influencing early disease detection, treatment planning, and therapeutic efficacy evaluation. However, the task faces significant challenges due to lesion morphological variability, indistinct boundaries, and low contrast with background tissues. To improve diagnostic accuracy and treatment outcomes, developing advanced segmentation techniques remains imperative. This paper proposes an adversarial learning-based dynamic architecture adjustment approach that integrates hierarchical U-shaped encoder-decoder, residual blocks, attention mechanisms, and ASPP modules. By dynamically optimizing feature fusion, our method enhances segmentation performance. Experimental results demonstrate a Dice coefficient of 0.6802, IoU of 0.5602, Recall of 0.766, Precision of 0.6525, and Accuracy of 0.9955, effectively addressing the challenges in fundus image hemorrhage segmentation.[* Corresponding author.]
Abstract:The development of intelligent robots seeks to seamlessly integrate them into the human world, providing assistance and companionship in daily life and work, with the ultimate goal of achieving human-robot symbiosis. To realize this vision, robots must continuously learn and evolve through consistent interaction and collaboration with humans, while humans need to gradually develop an understanding of and trust in robots through shared experiences. However, training and testing algorithms directly on physical robots involve substantial costs and safety risks. Moreover, current robotic simulators fail to support real human participation, limiting their ability to provide authentic interaction experiences and gather valuable human feedback. In this paper, we introduce SymbioSim, a novel human-in-the-loop robotic simulation platform designed to enable the safe and efficient development, evaluation, and optimization of human-robot interactions. By leveraging a carefully designed system architecture and modules, SymbioSim delivers a natural and realistic interaction experience, facilitating bidirectional continuous learning and adaptation for both humans and robots. Extensive experiments and user studies demonstrate the platform's promising performance and highlight its potential to significantly advance research on human-robot symbiosis.
Abstract:Efficient motion planning for Aerial Manipulators (AMs) is essential for tackling complex manipulation tasks, yet achieving coupled trajectory planning remains challenging. In this work, we propose, to the best of our knowledge, the first whole-body integrated motion planning framework for aerial manipulators, which is facilitated by an improved Safe Flight Corridor (SFC) generation strategy and high-dimensional collision-free trajectory planning. In particular, we formulate an optimization problem to generate feasible trajectories for both the quadrotor and manipulator while ensuring collision avoidance, dynamic feasibility, kinematic feasibility, and waypoint constraints. To achieve collision avoidance, we introduce a variable geometry approximation method, which dynamically models the changing collision volume induced by different manipulator configurations. Moreover, waypoint constraints in our framework are defined in $\mathrm{SE(3)\times\mathbb{R}^3}$, allowing the aerial manipulator to traverse specified positions while maintaining desired attitudes and end-effector states. The effectiveness of our framework is validated through comprehensive simulations and real-world experiments across various environments.
Abstract:Multimodal large language models have unlocked new possibilities for various multimodal tasks. However, their potential in image manipulation detection remains unexplored. When directly applied to the IMD task, M-LLMs often produce reasoning texts that suffer from hallucinations and overthinking. To address this, in this work, we propose ForgerySleuth, which leverages M-LLMs to perform comprehensive clue fusion and generate segmentation outputs indicating specific regions that are tampered with. Moreover, we construct the ForgeryAnalysis dataset through the Chain-of-Clues prompt, which includes analysis and reasoning text to upgrade the image manipulation detection task. A data engine is also introduced to build a larger-scale dataset for the pre-training phase. Our extensive experiments demonstrate the effectiveness of ForgeryAnalysis and show that ForgerySleuth significantly outperforms existing methods in generalization, robustness, and explainability.
Abstract:The complexity of stocks and industries presents challenges for stock prediction. Currently, stock prediction models can be divided into two categories. One category, represented by GRU and ALSTM, relies solely on stock factors for prediction, with limited effectiveness. The other category, represented by HIST and TRA, incorporates not only stock factors but also industry information, industry financial reports, public sentiment, and other inputs for prediction. The second category of models can capture correlations between stocks by introducing additional information, but the extra data is difficult to standardize and generalize. Considering the current state and limitations of these two types of models, this paper proposes the GRU-PFG (Project Factors into Graph) model. This model only takes stock factors as input and extracts inter-stock correlations using graph neural networks. It achieves prediction results that not only outperform the others models relies solely on stock factors, but also achieve comparable performance to the second category models. The experimental results show that on the CSI300 dataset, the IC of GRU-PFG is 0.134, outperforming HIST's 0.131 and significantly surpassing GRU and Transformer, achieving results better than the second category models. Moreover as a model that relies solely on stock factors, it has greater potential for generalization.
Abstract:In recent years, multimodal large language models (MLLMs) have garnered significant attention from both industry and academia. However, there is still considerable debate on constructing MLLM architectures, particularly regarding the selection of appropriate connectors for perception tasks of varying granularities. This paper systematically investigates the impact of connectors on MLLM performance. Specifically, we classify connectors into feature-preserving and feature-compressing types. Utilizing a unified classification standard, we categorize sub-tasks from three comprehensive benchmarks, MMBench, MME, and SEED-Bench, into three task types: coarse-grained perception, fine-grained perception, and reasoning, and evaluate the performance. Our findings reveal that feature-preserving connectors excel in \emph{fine-grained perception} tasks due to their ability to retain detailed visual information. In contrast, feature-compressing connectors, while less effective in fine-grained perception tasks, offer significant speed advantages and perform comparably in \emph{coarse-grained perception} and \emph{reasoning} tasks. These insights are crucial for guiding MLLM architecture design and advancing the optimization of MLLM architectures.
Abstract:To extend the context length of Transformer-based large language models (LLMs) and improve comprehension capabilities, we often face limitations due to computational resources and bounded memory storage capacity. This work introduces a method called Recurrent Context Compression (RCC), designed to efficiently expand the context window length of LLMs within constrained storage space. We also investigate the issue of poor model responses when both instructions and context are compressed in downstream tasks, and propose an instruction reconstruction method to mitigate this problem. We validated the effectiveness of our approach on multiple tasks, achieving a compression rate of up to 32x on text reconstruction tasks with a BLEU4 score close to 0.95, and nearly 100\% accuracy on a passkey retrieval task with a sequence length of 1M. Finally, our method demonstrated competitive performance in long-text question-answering tasks compared to non-compressed methods, while significantly saving storage resources in long-text inference tasks. Our code, models, and demo are available at https://github.com/WUHU-G/RCC_Transformer
Abstract:Continual learning, also known as lifelong learning or incremental learning, refers to the process by which a model learns from a stream of incoming data over time. A common problem in continual learning is the classification layer's bias towards the most recent task. Traditionally, methods have relied on incorporating data from past tasks during training to mitigate this issue. However, the recent shift in continual learning to memory-free environments has rendered these approaches infeasible. In this study, we propose a solution focused on the testing phase. We first introduce a simple Out-of-Task Detection method, OTD, designed to accurately identify samples from past tasks during testing. Leveraging OTD, we then propose: (1) an Adaptive Retention mechanism for dynamically tuning the classifier layer on past task data; (2) an Adaptive Correction mechanism for revising predictions when the model classifies data from previous tasks into classes from the current task. We name our approach Adaptive Retention & Correction (ARC). While designed for memory-free environments, ARC also proves effective in memory-based settings. Extensive experiments show that our proposed method can be plugged in to virtually any existing continual learning approach without requiring any modifications to its training procedure. Specifically, when integrated with state-of-the-art approaches, ARC achieves an average performance increase of 2.7% and 2.6% on the CIFAR-100 and Imagenet-R datasets, respectively.
Abstract:The recent wave of AI-generated content (AIGC) has witnessed substantial success in computer vision, with the diffusion model playing a crucial role in this achievement. Due to their impressive generative capabilities, diffusion models are gradually superseding methods based on GANs and auto-regressive Transformers, demonstrating exceptional performance not only in image generation and editing, but also in the realm of video-related research. However, existing surveys mainly focus on diffusion models in the context of image generation, with few up-to-date reviews on their application in the video domain. To address this gap, this paper presents a comprehensive review of video diffusion models in the AIGC era. Specifically, we begin with a concise introduction to the fundamentals and evolution of diffusion models. Subsequently, we present an overview of research on diffusion models in the video domain, categorizing the work into three key areas: video generation, video editing, and other video understanding tasks. We conduct a thorough review of the literature in these three key areas, including further categorization and practical contributions in the field. Finally, we discuss the challenges faced by research in this domain and outline potential future developmental trends. A comprehensive list of video diffusion models studied in this survey is available at https://github.com/ChenHsing/Awesome-Video-Diffusion-Models.