Abstract:DeepFake technology has gained significant attention due to its ability to manipulate facial attributes with high realism, raising serious societal concerns. Face-Swap DeepFake is the most harmful among these techniques, which fabricates behaviors by swapping original faces with synthesized ones. Existing forensic methods, primarily based on Deep Neural Networks (DNNs), effectively expose these manipulations and have become important authenticity indicators. However, these methods mainly concentrate on capturing the blending inconsistency in DeepFake faces, raising a new security issue, termed Active Fake, emerges when individuals intentionally create blending inconsistency in their authentic videos to evade responsibility. This tactic is called DeepFake Camouflage. To achieve this, we introduce a new framework for creating DeepFake camouflage that generates blending inconsistencies while ensuring imperceptibility, effectiveness, and transferability. This framework, optimized via an adversarial learning strategy, crafts imperceptible yet effective inconsistencies to mislead forensic detectors. Extensive experiments demonstrate the effectiveness and robustness of our method, highlighting the need for further research in active fake detection.
Abstract:Video post-processing methods can improve the quality of compressed videos at the decoder side. Most of the existing methods need to train corresponding models for compressed videos with different quantization parameters to improve the quality of compressed videos. However, in most cases, the quantization parameters of the decoded video are unknown. This makes existing methods have their limitations in improving video quality. To tackle this problem, this work proposes a diffusion model based post-processing method for compressed videos. The proposed method first estimates the feature vectors of the compressed video and then uses the estimated feature vectors as the prior information for the quality enhancement model to adaptively enhance the quality of compressed video with different quantization parameters. Experimental results show that the quality enhancement results of our proposed method on mixed datasets are superior to existing methods.
Abstract:DeepFakes have raised serious societal concerns, leading to a great surge in detection-based forensics methods in recent years. Face forgery recognition is the conventional detection method that usually follows a two-phase pipeline: it extracts the face first and then determines its authenticity by classification. Since DeepFakes in the wild usually contain multiple faces, using face forgery detection methods is merely practical as they have to process faces in a sequel, i.e., only one face is processed at the same time. One straightforward way to address this issue is to integrate face extraction and forgery detection in an end-to-end fashion by adapting advanced object detection architectures. However, as these object detection architectures are designed to capture the semantic information of different object categories rather than the subtle forgery traces among the faces, the direct adaptation is far from optimal. In this paper, we describe a new end-to-end framework, Contrastive Multi-FaceForensics (COMICS), to enhance multi-face forgery detection. The core of the proposed framework is a novel bi-grained contrastive learning approach that explores effective face forgery traces at both the coarse- and fine-grained levels. Specifically, the coarse-grained level contrastive learning captures the discriminative features among positive and negative proposal pairs in multiple scales with the instruction of the proposal generator, and the fine-grained level contrastive learning captures the pixel-wise discrepancy between the forged and original areas of the same face and the pixel-wise content inconsistency between different faces. Extensive experiments on the OpenForensics dataset demonstrate our method outperforms other counterparts by a large margin (~18.5%) and shows great potential for integration into various architectures.
Abstract:Face-swap DeepFake is an emerging AI-based face forgery technique that can replace the original face in a video with a generated face of the target identity while retaining consistent facial attributes such as expression and orientation. Due to the high privacy of faces, the misuse of this technique can raise severe social concerns, drawing tremendous attention to defend against DeepFakes recently. In this paper, we describe a new proactive defense method called FakeTracer to expose face-swap DeepFakes via implanting traces in training. Compared to general face-synthesis DeepFake, the face-swap DeepFake is more complex as it involves identity change, is subjected to the encoding-decoding process, and is trained unsupervised, increasing the difficulty of implanting traces into the training phase. To effectively defend against face-swap DeepFake, we design two types of traces, sustainable trace (STrace) and erasable trace (ETrace), to be added to training faces. During the training, these manipulated faces affect the learning of the face-swap DeepFake model, enabling it to generate faces that only contain sustainable traces. In light of these two traces, our method can effectively expose DeepFakes by identifying them. Extensive experiments are conducted on the Celeb-DF dataset, compared with recent passive and proactive defense methods, and are studied thoroughly regarding various factors, corroborating the efficacy of our method on defending against face-swap DeepFake.
Abstract:Convolutional neural networks are prevailing in deep learning tasks. However, they suffer from massive cost issues when working on mobile devices. Network pruning is an effective method of model compression to handle such problems. This paper presents a novel structured network pruning method with auxiliary gating structures which assigns importance marks to blocks in backbone network as a criterion when pruning. Block-wise pruning is then realized by proposed voting strategy, which is different from prevailing methods who prune a model in small granularity like channel-wise. We further develop a three-stage training scheduling for the proposed architecture incorporating knowledge distillation for better performance. Our experiments demonstrate that our method can achieve state-of-the-arts compression performance for the classification tasks. In addition, our approach can integrate synergistically with other pruning methods by providing pretrained models, thus achieving a better performance than the unpruned model with over 93\% FLOPs reduced.
Abstract:There are two mainstreams for object detection: top-down and bottom-up. The state-of-the-art approaches mostly belong to the first category. In this paper, we demonstrate that the bottom-up approaches are as competitive as the top-down and enjoy higher recall. Our approach, named CenterNet, detects each object as a triplet keypoints (top-left and bottom-right corners and the center keypoint). We firstly group the corners by some designed cues and further confirm the objects by the center keypoints. The corner keypoints equip the approach with the ability to detect objects of various scales and shapes and the center keypoint avoids the confusion brought by a large number of false-positive proposals. Our approach is a kind of anchor-free detector because it does not need to define explicit anchor boxes. We adapt our approach to the backbones with different structures, i.e., the 'hourglass' like networks and the the 'pyramid' like networks, which detect objects on a single-resolution feature map and multi-resolution feature maps, respectively. On the MS-COCO dataset, CenterNet with Res2Net-101 and Swin-Transformer achieves APs of 53.7% and 57.1%, respectively, outperforming all existing bottom-up detectors and achieving state-of-the-art. We also design a real-time CenterNet, which achieves a good trade-off between accuracy and speed with an AP of 43.6% at 30.5 FPS. https://github.com/Duankaiwen/PyCenterNet.
Abstract:Object detection, instance segmentation, and pose estimation are popular visual recognition tasks which require localizing the object by internal or boundary landmarks. This paper summarizes these tasks as location-sensitive visual recognition and proposes a unified solution named location-sensitive network (LSNet). Based on a deep neural network as the backbone, LSNet predicts an anchor point and a set of landmarks which together define the shape of the target object. The key to optimizing the LSNet lies in the ability of fitting various scales, for which we design a novel loss function named cross-IOU loss that computes the cross-IOU of each anchor point-landmark pair to approximate the global IOU between the prediction and ground-truth. The flexibly located and accurately predicted landmarks also enable LSNet to incorporate richer contextual information for visual recognition. Evaluated on the MS-COCO dataset, LSNet set the new state-of-the-art accuracy for anchor-free object detection (a 53.5% box AP) and instance segmentation (a 40.2% mask AP), and shows promising performance in detecting multi-scale human poses. Code is available at https://github.com/Duankaiwen/LSNet
Abstract:In recent years, the advent of deep learning-based techniques and the significant reduction in the cost of computation resulted in the feasibility of creating realistic videos of human faces, commonly known as DeepFakes. The availability of open-source tools to create DeepFakes poses as a threat to the trustworthiness of the online media. In this work, we develop an open-source online platform, known as DeepFake-o-meter, that integrates state-of-the-art DeepFake detection methods and provide a convenient interface for the users. We describe the design and function of DeepFake-o-meter in this work.
Abstract:The recent development of Deep Neural Networks (DNN) has significantly increased the realism of AI-synthesized faces, with the most notable examples being the DeepFakes. The DeepFake technology can synthesize a face of target subject from a face of another subject, while retains the same face attributes. With the rapidly increased social media portals (Facebook, Instagram, etc), these realistic fake faces rapidly spread though the Internet, causing a broad negative impact to the society. In this paper, we describe Landmark Breaker, the first dedicated method to disrupt facial landmark extraction, and apply it to the obstruction of the generation of DeepFake videos.Our motivation is that disrupting the facial landmark extraction can affect the alignment of input face so as to degrade the DeepFake quality. Our method is achieved using adversarial perturbations. Compared to the detection methods that only work after DeepFake generation, Landmark Breaker goes one step ahead to prevent DeepFake generation. The experiments are conducted on three state-of-the-art facial landmark extractors using the recent Celeb-DF dataset.
Abstract:Face synthesis is an important problem in computer vision with many applications. In this work, we describe a new method, namely LandmarkGAN, to synthesize faces based on facial landmarks as input. Facial landmarks are a natural, intuitive, and effective representation for facial expressions and orientations, which are independent from the target's texture or color and background scene. Our method is able to transform a set of facial landmarks into new faces of different subjects, while retains the same facial expression and orientation. Experimental results on face synthesis and reenactments demonstrate the effectiveness of our method.