Abstract:Low-light enhancement has wide applications in autonomous driving, 3D reconstruction, remote sensing, surveillance, and so on, which can significantly improve information utilization. However, most existing methods lack generalization and are limited to specific tasks such as image recovery. To address these issues, we propose \textbf{Gated-Mechanism Mixture-of-Experts (GM-MoE)}, the first framework to introduce a mixture-of-experts network for low-light image enhancement. GM-MoE comprises a dynamic gated weight conditioning network and three sub-expert networks, each specializing in a distinct enhancement task. Combining a self-designed gated mechanism that dynamically adjusts the weights of the sub-expert networks for different data domains. Additionally, we integrate local and global feature fusion within sub-expert networks to enhance image quality by capturing multi-scale features. Experimental results demonstrate that the GM-MoE achieves superior generalization with respect to 25 compared approaches, reaching state-of-the-art performance on PSNR on 5 benchmarks and SSIM on 4 benchmarks, respectively.
Abstract:The hemorrhagic lesion segmentation plays a critical role in ophthalmic diagnosis, directly influencing early disease detection, treatment planning, and therapeutic efficacy evaluation. However, the task faces significant challenges due to lesion morphological variability, indistinct boundaries, and low contrast with background tissues. To improve diagnostic accuracy and treatment outcomes, developing advanced segmentation techniques remains imperative. This paper proposes an adversarial learning-based dynamic architecture adjustment approach that integrates hierarchical U-shaped encoder-decoder, residual blocks, attention mechanisms, and ASPP modules. By dynamically optimizing feature fusion, our method enhances segmentation performance. Experimental results demonstrate a Dice coefficient of 0.6802, IoU of 0.5602, Recall of 0.766, Precision of 0.6525, and Accuracy of 0.9955, effectively addressing the challenges in fundus image hemorrhage segmentation.[* Corresponding author.]