Abstract:Fashion image editing aims to modify a person's appearance based on a given instruction. Existing methods require auxiliary tools like segmenters and keypoint extractors, lacking a flexible and unified framework. Moreover, these methods are limited in the variety of clothing types they can handle, as most datasets focus on people in clean backgrounds and only include generic garments such as tops, pants, and dresses. These limitations restrict their applicability in real-world scenarios. In this paper, we first extend an existing dataset for human generation to include a wider range of apparel and more complex backgrounds. This extended dataset features people wearing diverse items such as tops, pants, dresses, skirts, headwear, scarves, shoes, socks, and bags. Additionally, we propose AnyDesign, a diffusion-based method that enables mask-free editing on versatile areas. Users can simply input a human image along with a corresponding prompt in either text or image format. Our approach incorporates Fashion DiT, equipped with a Fashion-Guidance Attention (FGA) module designed to fuse explicit apparel types and CLIP-encoded apparel features. Both Qualitative and quantitative experiments demonstrate that our method delivers high-quality fashion editing and outperforms contemporary text-guided fashion editing methods.
Abstract:To extend the context length of Transformer-based large language models (LLMs) and improve comprehension capabilities, we often face limitations due to computational resources and bounded memory storage capacity. This work introduces a method called Recurrent Context Compression (RCC), designed to efficiently expand the context window length of LLMs within constrained storage space. We also investigate the issue of poor model responses when both instructions and context are compressed in downstream tasks, and propose an instruction reconstruction method to mitigate this problem. We validated the effectiveness of our approach on multiple tasks, achieving a compression rate of up to 32x on text reconstruction tasks with a BLEU4 score close to 0.95, and nearly 100\% accuracy on a passkey retrieval task with a sequence length of 1M. Finally, our method demonstrated competitive performance in long-text question-answering tasks compared to non-compressed methods, while significantly saving storage resources in long-text inference tasks. Our code, models, and demo are available at https://github.com/WUHU-G/RCC_Transformer
Abstract:Virtual try-on can significantly improve the garment shopping experiences in both online and in-store scenarios, attracting broad interest in computer vision. However, to achieve high-fidelity try-on performance, most state-of-the-art methods still rely on accurate segmentation masks, which are often produced by near-perfect parsers or manual labeling. To overcome the bottleneck, we propose a parser-free virtual try-on method based on the diffusion model (PFDM). Given two images, PFDM can "wear" garments on the target person seamlessly by implicitly warping without any other information. To learn the model effectively, we synthesize many pseudo-images and construct sample pairs by wearing various garments on persons. Supervised by the large-scale expanded dataset, we fuse the person and garment features using a proposed Garment Fusion Attention (GFA) mechanism. Experiments demonstrate that our proposed PFDM can successfully handle complex cases, synthesize high-fidelity images, and outperform both state-of-the-art parser-free and parser-based models.
Abstract:In many face recognition applications, there is large amount of face data with two images for each person. One is an ID photo for face enrollment, and the other is a probe photo captured on spot. Most existing methods are designed for training data with limited breadth (relatively small class number) and sufficient depth (many samples for each class). They would meet great challenges when applied on this ID vs. Spot (IvS) data, including the under-represented intra-class variations and the excessive demand on computing devices. In this paper, we propose a deep learning based large-scale bisample learning (LBL) method for IvS face recognition. To tackle the bisample problem that there are only two samples for each class, a classification-verification-classification (CVC) training strategy is proposed to progressively enhance the IvS performance. Besides, a dominant prototype softmax (DP-softmax) is incorporated to make the deep learning applicable on large-scale classes. We conduct LBL on a IvS face dataset with more than two million identities. Experimental results show the proposed method achieves superior performance than previous ones, validating the effectiveness of LBL on IvS face recognition.
Abstract:Deep learning, in particular Convolutional Neural Network (CNN), has achieved promising results in face recognition recently. However, it remains an open question: why CNNs work well and how to design a 'good' architecture. The existing works tend to focus on reporting CNN architectures that work well for face recognition rather than investigate the reason. In this work, we conduct an extensive evaluation of CNN-based face recognition systems (CNN-FRS) on a common ground to make our work easily reproducible. Specifically, we use public database LFW (Labeled Faces in the Wild) to train CNNs, unlike most existing CNNs trained on private databases. We propose three CNN architectures which are the first reported architectures trained using LFW data. This paper quantitatively compares the architectures of CNNs and evaluate the effect of different implementation choices. We identify several useful properties of CNN-FRS. For instance, the dimensionality of the learned features can be significantly reduced without adverse effect on face recognition accuracy. In addition, traditional metric learning method exploiting CNN-learned features is evaluated. Experiments show two crucial factors to good CNN-FRS performance are the fusion of multiple CNNs and metric learning. To make our work reproducible, source code and models will be made publicly available.
Abstract:Pushing by big data and deep convolutional neural network (CNN), the performance of face recognition is becoming comparable to human. Using private large scale training datasets, several groups achieve very high performance on LFW, i.e., 97% to 99%. While there are many open source implementations of CNN, none of large scale face dataset is publicly available. The current situation in the field of face recognition is that data is more important than algorithm. To solve this problem, this paper proposes a semi-automatical way to collect face images from Internet and builds a large scale dataset containing about 10,000 subjects and 500,000 images, called CASIAWebFace. Based on the database, we use a 11-layer CNN to learn discriminative representation and obtain state-of-theart accuracy on LFW and YTF. The publication of CASIAWebFace will attract more research groups entering this field and accelerate the development of face recognition in the wild.
Abstract:Various hand-crafted features and metric learning methods prevail in the field of person re-identification. Compared to these methods, this paper proposes a more general way that can learn a similarity metric from image pixels directly. By using a "siamese" deep neural network, the proposed method can jointly learn the color feature, texture feature and metric in a unified framework. The network has a symmetry structure with two sub-networks which are connected by Cosine function. To deal with the big variations of person images, binomial deviance is used to evaluate the cost between similarities and labels, which is proved to be robust to outliers. Compared to existing researches, a more practical setting is studied in the experiments that is training and test on different datasets (cross dataset person re-identification). Both in "intra dataset" and "cross dataset" settings, the superiorities of the proposed method are illustrated on VIPeR and PRID.
Abstract:After intensive research, heterogenous face recognition is still a challenging problem. The main difficulties are owing to the complex relationship between heterogenous face image spaces. The heterogeneity is always tightly coupled with other variations, which makes the relationship of heterogenous face images highly nonlinear. Many excellent methods have been proposed to model the nonlinear relationship, but they apt to overfit to the training set, due to limited samples. Inspired by the unsupervised algorithms in deep learning, this paper proposes an novel framework for heterogeneous face recognition. We first extract Gabor features at some localized facial points, and then use Restricted Boltzmann Machines (RBMs) to learn a shared representation locally to remove the heterogeneity around each facial point. Finally, the shared representations of local RBMs are connected together and processed by PCA. Two problems (Sketch-Photo and NIR-VIS) and three databases are selected to evaluate the proposed method. For Sketch-Photo problem, we obtain perfect results on the CUFS database. For NIR-VIS problem, we produce new state-of-the-art performance on the CASIA HFB and NIR-VIS 2.0 databases.
Abstract:In this paper, we propose a method to apply the popular cascade classifier into face recognition to improve the computational efficiency while keeping high recognition rate. In large scale face recognition systems, because the probability of feature templates coming from different subjects is very high, most of the matching pairs will be rejected by the early stages of the cascade. Therefore, the cascade can improve the matching speed significantly. On the other hand, using the nested structure of the cascade, we could drop some stages at the end of feature to reduce the memory and bandwidth usage in some resources intensive system while not sacrificing the performance too much. The cascade is learned by two steps. Firstly, some kind of prepared features are grouped into several nested stages. And then, the threshold of each stage is learned to achieve user defined verification rate (VR). In the paper, we take a landmark based Gabor+LDA face recognition system as baseline to illustrate the process and advantages of the proposed method. However, the use of this method is very generic and not limited in face recognition, which can be easily generalized to other biometrics as a post-processing module. Experiments on the FERET database show the good performance of our baseline and an experiment on a self-collected large scale database illustrates that the cascade can improve the matching speed significantly.