University of Surrey, UK
Abstract:Audio-driven talking face generation is a challenging task in digital communication. Despite significant progress in the area, most existing methods concentrate on audio-lip synchronization, often overlooking aspects such as visual quality, customization, and generalization that are crucial to producing realistic talking faces. To address these limitations, we introduce a novel, customizable one-shot audio-driven talking face generation framework, named PortraitTalk. Our proposed method utilizes a latent diffusion framework consisting of two main components: IdentityNet and AnimateNet. IdentityNet is designed to preserve identity features consistently across the generated video frames, while AnimateNet aims to enhance temporal coherence and motion consistency. This framework also integrates an audio input with the reference images, thereby reducing the reliance on reference-style videos prevalent in existing approaches. A key innovation of PortraitTalk is the incorporation of text prompts through decoupled cross-attention mechanisms, which significantly expands creative control over the generated videos. Through extensive experiments, including a newly developed evaluation metric, our model demonstrates superior performance over the state-of-the-art methods, setting a new standard for the generation of customizable realistic talking faces suitable for real-world applications.
Abstract:The shared topology of human skeletons motivated the recent investigation of graph convolutional network (GCN) solutions for action recognition. However, the existing GCNs rely on the binary connection of two neighbouring vertices (joints) formed by an edge (bone), overlooking the potential of constructing multi-vertex convolution structures. In this paper we address this oversight and explore the merits of a hyper-graph convolutional network (Hyper-GCN) to achieve the aggregation of rich semantic information conveyed by skeleton vertices. In particular, our Hyper-GCN adaptively optimises multi-scale hyper-graphs during training, revealing the action-driven multi-vertex relations. Besides, virtual connections are often designed to support efficient feature aggregation, implicitly extending the spectrum of dependencies within the skeleton. By injecting virtual connections into hyper-graphs, the semantic clues of diverse action categories can be highlighted. The results of experiments conducted on the NTU-60, NTU-120, and NW-UCLA datasets, demonstrate the merits of our Hyper-GCN, compared to the state-of-the-art methods. Specifically, we outperform the existing solutions on NTU-120, achieving 90.2\% and 91.4\% in terms of the top-1 recognition accuracy on X-Sub and X-Set.
Abstract:Euclidean representation learning methods have achieved commendable results in image fusion tasks, which can be attributed to their clear advantages in handling with linear space. However, data collected from a realistic scene usually have a non-Euclidean structure, where Euclidean metric might be limited in representing the true data relationships, degrading fusion performance. To address this issue, a novel SPD (symmetric positive definite) manifold learning framework is proposed for multi-modal image fusion, named SPDFusion, which extends the image fusion approach from the Euclidean space to the SPD manifolds. Specifically, we encode images according to the Riemannian geometry to exploit their intrinsic statistical correlations, thereby aligning with human visual perception. Actually, the SPD matrix underpins our network learning, with a cross-modal fusion strategy employed to harness modality-specific dependencies and augment complementary information. Subsequently, an attention module is designed to process the learned weight matrix, facilitating the weighting of spatial global correlation semantics via SPD matrix multiplication. Based on this, we design an end-to-end fusion network based on cross-modal manifold learning. Extensive experiments on public datasets demonstrate that our framework exhibits superior performance compared to the current state-of-the-art methods.
Abstract:Event-based bionic camera asynchronously captures dynamic scenes with high temporal resolution and high dynamic range, offering potential for the integration of events and RGB under conditions of illumination degradation and fast motion. Existing RGB-E tracking methods model event characteristics utilising attention mechanism of Transformer before integrating both modalities. Nevertheless, these methods involve aggregating the event stream into a single event frame, lacking the utilisation of the temporal information inherent in the event stream.Moreover, the traditional attention mechanism is well-suited for dense semantic features, while the attention mechanism for sparse event features require revolution. In this paper, we propose a dynamic event subframe splitting strategy to split the event stream into more fine-grained event clusters, aiming to capture spatio-temporal features that contain motion cues. Based on this, we design an event-based sparse attention mechanism to enhance the interaction of event features in temporal and spatial dimensions. The experimental results indicate that our method outperforms existing state-of-the-art methods on the FE240 and COESOT datasets, providing an effective processing manner for the event data.
Abstract:The creation of 3D human face avatars from a single unconstrained image is a fundamental task that underlies numerous real-world vision and graphics applications. Despite the significant progress made in generative models, existing methods are either less suited in design for human faces or fail to generalise from the restrictive training domain to unconstrained facial images. To address these limitations, we propose a novel model, Gen3D-Face, which generates 3D human faces with unconstrained single image input within a multi-view consistent diffusion framework. Given a specific input image, our model first produces multi-view images, followed by neural surface construction. To incorporate face geometry information in a generalisable manner, we utilise input-conditioned mesh estimation instead of ground-truth mesh along with synthetic multi-view training data. Importantly, we introduce a multi-view joint generation scheme to enhance appearance consistency among different views. To the best of our knowledge, this is the first attempt and benchmark for creating photorealistic 3D human face avatars from single images for generic human subject across domains. Extensive experiments demonstrate the superiority of our method over previous alternatives for out-of-domain singe image 3D face generation and top competition for in-domain setting.
Abstract:In recent years, Multi-Modality Image Fusion (MMIF) has been applied to many fields, which has attracted many scholars to endeavour to improve the fusion performance. However, the prevailing focus has predominantly been on the architecture design, rather than the training strategies. As a low-level vision task, image fusion is supposed to quickly deliver output images for observation and supporting downstream tasks. Thus, superfluous computational and storage overheads should be avoided. In this work, a lightweight Distilled Mini-Model with a Dynamic Refresh strategy (MMDRFuse) is proposed to achieve this objective. To pursue model parsimony, an extremely small convolutional network with a total of 113 trainable parameters (0.44 KB) is obtained by three carefully designed supervisions. First, digestible distillation is constructed by emphasising external spatial feature consistency, delivering soft supervision with balanced details and saliency for the target network. Second, we develop a comprehensive loss to balance the pixel, gradient, and perception clues from the source images. Third, an innovative dynamic refresh training strategy is used to collaborate history parameters and current supervision during training, together with an adaptive adjust function to optimise the fusion network. Extensive experiments on several public datasets demonstrate that our method exhibits promising advantages in terms of model efficiency and complexity, with superior performance in multiple image fusion tasks and downstream pedestrian detection application. The code of this work is publicly available at https://github.com/yanglinDeng/MMDRFuse.
Abstract:Compositional actions consist of dynamic (verbs) and static (objects) concepts. Humans can easily recognize unseen compositions using the learned concepts. For machines, solving such a problem requires a model to recognize unseen actions composed of previously observed verbs and objects, thus requiring, so-called, compositional generalization ability. To facilitate this research, we propose a novel Zero-Shot Compositional Action Recognition (ZS-CAR) task. For evaluating the task, we construct a new benchmark, Something-composition (Sth-com), based on the widely used Something-Something V2 dataset. We also propose a novel Component-to-Composition (C2C) learning method to solve the new ZS-CAR task. C2C includes an independent component learning module and a composition inference module. Last, we devise an enhanced training strategy to address the challenges of component variation between seen and unseen compositions and to handle the subtle balance between learning seen and unseen actions. The experimental results demonstrate that the proposed framework significantly surpasses the existing compositional generalization methods and sets a new state-of-the-art. The new Sth-com benchmark and code are available at https://github.com/RongchangLi/ZSCAR_C2C.
Abstract:Vision transformers combined with self-supervised learning have enabled the development of models which scale across large datasets for several downstream tasks like classification, segmentation and detection. The low-shot learning capability of these models, across several low-shot downstream tasks, has been largely under explored. We perform a system level study of different self supervised pretext tasks, namely contrastive learning, clustering, and masked image modelling for their low-shot capabilities by comparing the pretrained models. In addition we also study the effects of collapse avoidance methods, namely centring, ME-MAX, sinkhorn, on these downstream tasks. Based on our detailed analysis, we introduce a framework involving both mask image modelling and clustering as pretext tasks, which performs better across all low-shot downstream tasks, including multi-class classification, multi-label classification and semantic segmentation. Furthermore, when testing the model on full scale datasets, we show performance gains in multi-class classification, multi-label classification and semantic segmentation.
Abstract:Masked Image Modeling (MIM)-based models, such as SdAE, CAE, GreenMIM, and MixAE, have explored different strategies to enhance the performance of Masked Autoencoders (MAE) by modifying prediction, loss functions, or incorporating additional architectural components. In this paper, we propose an enhanced approach that boosts MAE performance by integrating pseudo labelling for both class and data tokens, alongside replacing the traditional pixel-level reconstruction with token-level reconstruction. This strategy uses cluster assignments as pseudo labels to promote instance-level discrimination within the network, while token reconstruction requires generation of discrete tokens encapturing local context. The targets for pseudo labelling and reconstruction needs to be generated by a teacher network. To disentangle the generation of target pseudo labels and the reconstruction of the token features, we decouple the teacher into two distinct models, where one serves as a labelling teacher and the other as a reconstruction teacher. This separation proves empirically superior to a single teacher, while having negligible impact on throughput and memory consumption. Incorporating pseudo-labelling as an auxiliary task has demonstrated notable improvements in ImageNet-1K and other downstream tasks, including classification, semantic segmentation, and detection.
Abstract:There is currently strong interest in improving visual object tracking by augmenting the RGB modality with the output of a visual event camera that is particularly informative about the scene motion. However, existing approaches perform event feature extraction for RGB-E tracking using traditional appearance models, which have been optimised for RGB only tracking, without adapting it for the intrinsic characteristics of the event data. To address this problem, we propose an Event backbone (Pooler), designed to obtain a high-quality feature representation that is cognisant of the innate characteristics of the event data, namely its sparsity. In particular, Multi-Scale Pooling is introduced to capture all the motion feature trends within event data through the utilisation of diverse pooling kernel sizes. The association between the derived RGB and event representations is established by an innovative module performing adaptive Mutually Guided Fusion (MGF). Extensive experimental results show that our method significantly outperforms state-of-the-art trackers on two widely used RGB-E tracking datasets, including VisEvent and COESOT, where the precision and success rates on COESOT are improved by 4.9% and 5.2%, respectively. Our code will be available at https://github.com/SSSpc333/TENet.