Abstract:Sarcasm is a rhetorical device that is used to convey the opposite of the literal meaning of an utterance. Sarcasm is widely used on social media and other forms of computer-mediated communication motivating the use of computational models to identify it automatically. While the clear majority of approaches to sarcasm detection have been carried out on text only, sarcasm detection often requires additional information present in tonality, facial expression, and contextual images. This has led to the introduction of multimodal models, opening the possibility to detect sarcasm in multiple modalities such as audio, images, text, and video. In this paper, we present the first comprehensive survey on multimodal sarcasm detection - henceforth MSD - to date. We survey papers published between 2018 and 2023 on the topic, and discuss the models and datasets used for this task. We also present future research directions in MSD.
Abstract:This exploratory study investigates the potential of multilingual Automatic Post-Editing (APE) systems to enhance the quality of machine translations for low-resource Indo-Aryan languages. Focusing on two closely related language pairs, English-Marathi and English-Hindi, we exploit the linguistic similarities to develop a robust multilingual APE model. To facilitate cross-linguistic transfer, we generate synthetic Hindi-Marathi and Marathi-Hindi APE triplets. Additionally, we incorporate a Quality Estimation (QE)-APE multi-task learning framework. While the experimental results underline the complementary nature of APE and QE, we also observe that QE-APE multitask learning facilitates effective domain adaptation. Our experiments demonstrate that the multilingual APE models outperform their corresponding English-Hindi and English-Marathi single-pair models by $2.5$ and $2.39$ TER points, respectively, with further notable improvements over the multilingual APE model observed through multi-task learning ($+1.29$ and $+1.44$ TER points), data augmentation ($+0.53$ and $+0.45$ TER points) and domain adaptation ($+0.35$ and $+0.45$ TER points). We release the synthetic data, code, and models accrued during this study publicly at https://github.com/cfiltnlp/Multilingual-APE.
Abstract:This paper addresses the challenge of improving user experience on e-commerce platforms by enhancing product ranking relevant to users' search queries. Ambiguity and complexity of user queries often lead to a mismatch between the user's intent and retrieved product titles or documents. Recent approaches have proposed the use of Transformer-based models, which need millions of annotated query-title pairs during the pre-training stage, and this data often does not take user intent into account. To tackle this, we curate samples from existing datasets at eBay, manually annotated with buyer-centric relevance scores and centrality scores, which reflect how well the product title matches the users' intent. We introduce a User-intent Centrality Optimization (UCO) approach for existing models, which optimises for the user intent in semantic product search. To that end, we propose a dual-loss based optimisation to handle hard negatives, i.e., product titles that are semantically relevant but do not reflect the user's intent. Our contributions include curating challenging evaluation sets and implementing UCO, resulting in significant product ranking efficiency improvements observed for different evaluation metrics. Our work aims to ensure that the most buyer-centric titles for a query are ranked higher, thereby, enhancing the user experience on e-commerce platforms.
Abstract:This paper investigates data sampling strategies to create a benchmark for dialectal sentiment classification of Google Places reviews written in English. Based on location-based filtering, we collect a self-supervised dataset of reviews in Australian (Australian English), Indian (Indian English), and British (British English) English with self-supervised sentiment labels (1-star to 5-star). We employ sampling techniques based on label semantics, review length, and sentiment proportion and report performances on three fine-tuned BERT-based models. Our multi-dialect evaluation provides pointers to challenging scenarios for inner-circle (Australian English and British English) as well as non-native dialects (Indian English) of English, highlighting the need for more diverse benchmarks.
Abstract:This paper investigates whether large language models (LLMs) are state-of-the-art quality estimators for machine translation of user-generated content (UGC) that contains emotional expressions, without the use of reference translations. To achieve this, we employ an existing emotion-related dataset with human-annotated errors and calculate quality evaluation scores based on the Multi-dimensional Quality Metrics. We compare the accuracy of several LLMs with that of our fine-tuned baseline models, under in-context learning and parameter-efficient fine-tuning (PEFT) scenarios. We find that PEFT of LLMs leads to better performance in score prediction with human interpretable explanations than fine-tuned models. However, a manual analysis of LLM outputs reveals that they still have problems such as refusal to reply to a prompt and unstable output while evaluating machine translation of UGC.
Abstract:The tutorial describes the concept of edit distances applied to research and commercial contexts. We use Translation Edit Rate (TER), Levenshtein, Damerau-Levenshtein, Longest Common Subsequence and $n$-gram distances to demonstrate the frailty of statistical metrics when comparing text sequences. Our discussion disassembles them into their essential components. We discuss the centrality of four editing actions: insert, delete, replace and move words, and show their implementations in openly available packages and toolkits. The application of edit distances in downstream tasks often assumes that these accurately represent work done by post-editors and real errors that need to be corrected in MT output. We discuss how imperfect edit distances are in capturing the details of this error correction work and the implications for researchers and for commercial applications, of these uses of edit distances. In terms of commercial applications, we discuss their integration in computer-assisted translation tools and how the perception of the connection between edit distances and post-editor effort affects the definition of translator rates.
Abstract:Leveraging large language models (LLMs) for various natural language processing tasks has led to superlative claims about their performance. For the evaluation of machine translation (MT), existing research shows that LLMs are able to achieve results comparable to fine-tuned multilingual pre-trained language models. In this paper, we explore what translation information, such as the source, reference, translation errors and annotation guidelines, is needed for LLMs to evaluate MT quality. In addition, we investigate prompting techniques such as zero-shot, Chain of Thought (CoT) and few-shot prompting for eight language pairs covering high-, medium- and low-resource languages, leveraging varying LLM variants. Our findings indicate the importance of reference translations for an LLM-based evaluation. While larger models do not necessarily fare better, they tend to benefit more from CoT prompting, than smaller models. We also observe that LLMs do not always provide a numerical score when generating evaluations, which poses a question on their reliability for the task. Our work presents a comprehensive analysis for resource-constrained and training-less LLM-based evaluation of machine translation. We release the accrued prompt templates, code and data publicly for reproducibility.
Abstract:Novel view acoustic synthesis (NVAS) aims to render binaural audio at any target viewpoint, given a mono audio emitted by a sound source at a 3D scene. Existing methods have proposed NeRF-based implicit models to exploit visual cues as a condition for synthesizing binaural audio. However, in addition to low efficiency originating from heavy NeRF rendering, these methods all have a limited ability of characterizing the entire scene environment such as room geometry, material properties, and the spatial relation between the listener and sound source. To address these issues, we propose a novel Audio-Visual Gaussian Splatting (AV-GS) model. To obtain a material-aware and geometry-aware condition for audio synthesis, we learn an explicit point-based scene representation with an audio-guidance parameter on locally initialized Gaussian points, taking into account the space relation from the listener and sound source. To make the visual scene model audio adaptive, we propose a point densification and pruning strategy to optimally distribute the Gaussian points, with the per-point contribution in sound propagation (e.g., more points needed for texture-less wall surfaces as they affect sound path diversion). Extensive experiments validate the superiority of our AV-GS over existing alternatives on the real-world RWAS and simulation-based SoundSpaces datasets.
Abstract:Audio-Visual Segmentation (AVS) aims to identify, at the pixel level, the object in a visual scene that produces a given sound. Current AVS methods rely on costly fine-grained annotations of mask-audio pairs, making them impractical for scalability. To address this, we introduce unsupervised AVS, eliminating the need for such expensive annotation. To tackle this more challenging problem, we propose an unsupervised learning method, named Modality Correspondence Alignment (MoCA), which seamlessly integrates off-the-shelf foundation models like DINO, SAM, and ImageBind. This approach leverages their knowledge complementarity and optimizes their joint usage for multi-modality association. Initially, we estimate positive and negative image pairs in the feature space. For pixel-level association, we introduce an audio-visual adapter and a novel pixel matching aggregation strategy within the image-level contrastive learning framework. This allows for a flexible connection between object appearance and audio signal at the pixel level, with tolerance to imaging variations such as translation and rotation. Extensive experiments on the AVSBench (single and multi-object splits) and AVSS datasets demonstrate that our MoCA outperforms strongly designed baseline methods and approaches supervised counterparts, particularly in complex scenarios with multiple auditory objects. Notably when comparing mIoU, MoCA achieves a substantial improvement over baselines in both the AVSBench (S4: +17.24%; MS3: +67.64%) and AVSS (+19.23%) audio-visual segmentation challenges.
Abstract:This study explores the use of Google Translate (GT) for translating mental healthcare (MHealth) information and evaluates its accuracy, comprehensibility, and implications for multilingual healthcare communication through analysing GT output in the MHealth domain from English to Persian, Arabic, Turkish, Romanian, and Spanish. Two datasets comprising MHealth information from the UK National Health Service website and information leaflets from The Royal College of Psychiatrists were used. Native speakers of the target languages manually assessed the GT translations, focusing on medical terminology accuracy, comprehensibility, and critical syntactic/semantic errors. GT output analysis revealed challenges in accurately translating medical terminology, particularly in Arabic, Romanian, and Persian. Fluency issues were prevalent across various languages, affecting comprehension, mainly in Arabic and Spanish. Critical errors arose in specific contexts, such as bullet-point formatting, specifically in Persian, Turkish, and Romanian. Although improvements are seen in longer-text translations, there remains a need to enhance accuracy in medical and mental health terminology and fluency, whilst also addressing formatting issues for a more seamless user experience. The findings highlight the need to use customised translation engines for Mhealth translation and the challenges when relying solely on machine-translated medical content, emphasising the crucial role of human reviewers in multilingual healthcare communication.