Abstract:Despite large language models (LLMs) being known to exhibit bias against non-mainstream varieties, there are no known labeled datasets for sentiment analysis of English. To address this gap, we introduce BESSTIE, a benchmark for sentiment and sarcasm classification for three varieties of English: Australian (en-AU), Indian (en-IN), and British (en-UK). Using web-based content from two domains, namely, Google Place reviews and Reddit comments, we collect datasets for these language varieties using two methods: location-based and topic-based filtering. Native speakers of the language varieties manually annotate the datasets with sentiment and sarcasm labels. Subsequently, we fine-tune nine large language models (LLMs) (representing a range of encoder/decoder and mono/multilingual models) on these datasets, and evaluate their performance on the two tasks. Our results reveal that the models consistently perform better on inner-circle varieties (i.e., en-AU and en-UK), with significant performance drops for en-IN, particularly in sarcasm detection. We also report challenges in cross-variety generalisation, highlighting the need for language variety-specific datasets such as ours. BESSTIE promises to be a useful evaluative benchmark for future research in equitable LLMs, specifically in terms of language varieties. The BESSTIE datasets, code, and models are currently available on request, while the paper is under review. Please email aditya.joshi@unsw.edu.au.
Abstract:This paper investigates data sampling strategies to create a benchmark for dialectal sentiment classification of Google Places reviews written in English. Based on location-based filtering, we collect a self-supervised dataset of reviews in Australian (Australian English), Indian (Indian English), and British (British English) English with self-supervised sentiment labels (1-star to 5-star). We employ sampling techniques based on label semantics, review length, and sentiment proportion and report performances on three fine-tuned BERT-based models. Our multi-dialect evaluation provides pointers to challenging scenarios for inner-circle (Australian English and British English) as well as non-native dialects (Indian English) of English, highlighting the need for more diverse benchmarks.
Abstract:Dialect adapters that improve the performance of LLMs for NLU tasks on certain sociolects/dialects/national varieties ('dialects' for the sake of brevity) have been reported for encoder models. In this paper, we extend the idea of dialect adapters to decoder models in our architecture called LoRDD. Using MD-3, a publicly available dataset of word game-playing conversations between dialectal speakers, our task is Target Word Prediction (TWP) from a masked conversation. LoRDD combines task adapters and dialect adapters where the latter employ contrastive learning on pseudo-parallel conversations from MD-3. Our results for en-IN conversations on two models (Mistral and Gemma) show that LoRDD outperforms four baselines on TWP, while bridging the performance gap with en-US by 12% on word similarity and 25% on accuracy. The focused contribution of LoRDD is in its promise for dialect adaptation of decoder models.
Abstract:With an evergrowing number of LLMs reporting superlative performance for English, their ability to perform equitably for different dialects of English (i.e., dialect robustness) needs to be ascertained. Specifically, we use English language (US English or Indian English) conversations between humans who play the word-guessing game of `taboo'. We formulate two evaluative tasks: target word prediction (TWP) (i.e.predict the masked target word in a conversation) and target word selection (TWS) (i.e., select the most likely masked target word in a conversation, from among a set of candidate words). Extending MD3, an existing dialectic dataset of taboo-playing conversations, we introduce M-MD3, a target-word-masked version of MD3 with the USEng and IndEng subsets. We add two subsets: AITrans (where dialectic information is removed from IndEng) and AIGen (where LLMs are prompted to generate conversations). Our evaluation uses pre-trained and fine-tuned versions of two closed-source (GPT-4/3.5) and two open-source LLMs (Mistral and Gemma). LLMs perform significantly better for US English than Indian English for both TWP and TWS, for all settings. While GPT-based models perform the best, the comparatively smaller models work more equitably for short conversations (<8 turns). Our results on AIGen and AITrans (the best and worst-performing subset) respectively show that LLMs may learn a dialect of their own based on the composition of the training data, and that dialect robustness is indeed a challenging task. Our evaluation methodology exhibits a novel way to examine attributes of language models using pre-existing dialogue datasets.