Abstract:Aligning the rhythm of visual motion in a video with a given music track is a practical need in multimedia production, yet remains an underexplored task in autonomous video editing. Effective alignment between motion and musical beats enhances viewer engagement and visual appeal, particularly in music videos, promotional content, and cinematic editing. Existing methods typically depend on labor-intensive manual cutting, speed adjustments, or heuristic-based editing techniques to achieve synchronization. While some generative models handle joint video and music generation, they often entangle the two modalities, limiting flexibility in aligning video to music beats while preserving the full visual content. In this paper, we propose a novel and efficient framework, termed MVAA (Music-Video Auto-Alignment), that automatically edits video to align with the rhythm of a given music track while preserving the original visual content. To enhance flexibility, we modularize the task into a two-step process in our MVAA: aligning motion keyframes with audio beats, followed by rhythm-aware video inpainting. Specifically, we first insert keyframes at timestamps aligned with musical beats, then use a frame-conditioned diffusion model to generate coherent intermediate frames, preserving the original video's semantic content. Since comprehensive test-time training can be time-consuming, we adopt a two-stage strategy: pretraining the inpainting module on a small video set to learn general motion priors, followed by rapid inference-time fine-tuning for video-specific adaptation. This hybrid approach enables adaptation within 10 minutes with one epoch on a single NVIDIA 4090 GPU using CogVideoX-5b-I2V as the backbone. Extensive experiments show that our approach can achieve high-quality beat alignment and visual smoothness.
Abstract:We present Chain-of-Action (CoA), a novel visuo-motor policy paradigm built upon Trajectory Autoregressive Modeling. Unlike conventional approaches that predict next step action(s) forward, CoA generates an entire trajectory by explicit backward reasoning with task-specific goals through an action-level Chain-of-Thought (CoT) process. This process is unified within a single autoregressive structure: (1) the first token corresponds to a stable keyframe action that encodes the task-specific goals; and (2) subsequent action tokens are generated autoregressively, conditioned on the initial keyframe and previously predicted actions. This backward action reasoning enforces a global-to-local structure, allowing each local action to be tightly constrained by the final goal. To further realize the action reasoning structure, CoA incorporates four complementary designs: continuous action token representation; dynamic stopping for variable-length trajectory generation; reverse temporal ensemble; and multi-token prediction to balance action chunk modeling with global structure. As a result, CoA gives strong spatial generalization capabilities while preserving the flexibility and simplicity of a visuo-motor policy. Empirically, we observe CoA achieves the state-of-the-art performance across 60 RLBench tasks and 8 real-world manipulation tasks.
Abstract:Recent methods, such as Neural Radiance Fields (NeRF) and 3D Gaussian Splatting (3DGS), have demonstrated remarkable capabilities in novel view synthesis. However, despite their success in producing high-quality images for viewpoints similar to those seen during training, they struggle when generating detailed images from viewpoints that significantly deviate from the training set, particularly in close-up views. The primary challenge stems from the lack of specific training data for close-up views, leading to the inability of current methods to render these views accurately. To address this issue, we introduce a novel pseudo-label-based learning strategy. This approach leverages pseudo-labels derived from existing training data to provide targeted supervision across a wide range of close-up viewpoints. Recognizing the absence of benchmarks for this specific challenge, we also present a new dataset designed to assess the effectiveness of both current and future methods in this area. Our extensive experiments demonstrate the efficacy of our approach.
Abstract:Text-to-video generation poses significant challenges due to the inherent complexity of video data, which spans both temporal and spatial dimensions. It introduces additional redundancy, abrupt variations, and a domain gap between language and vision tokens while generation. Addressing these challenges requires an effective video tokenizer that can efficiently encode video data while preserving essential semantic and spatiotemporal information, serving as a critical bridge between text and vision. Inspired by the observation in VQ-VAE-2 and workflows of traditional animation, we propose HiTVideo for text-to-video generation with hierarchical tokenizers. It utilizes a 3D causal VAE with a multi-layer discrete token framework, encoding video content into hierarchically structured codebooks. Higher layers capture semantic information with higher compression, while lower layers focus on fine-grained spatiotemporal details, striking a balance between compression efficiency and reconstruction quality. Our approach efficiently encodes longer video sequences (e.g., 8 seconds, 64 frames), reducing bits per pixel (bpp) by approximately 70\% compared to baseline tokenizers, while maintaining competitive reconstruction quality. We explore the trade-offs between compression and reconstruction, while emphasizing the advantages of high-compressed semantic tokens in text-to-video tasks. HiTVideo aims to address the potential limitations of existing video tokenizers in text-to-video generation tasks, striving for higher compression ratios and simplify LLMs modeling under language guidance, offering a scalable and promising framework for advancing text to video generation. Demo page: https://ziqinzhou66.github.io/project/HiTVideo.
Abstract:3D Gaussian Splatting (3DGS) has demonstrated impressive performance in synthesizing novel views after training on a given set of viewpoints. However, its rendering quality deteriorates when the synthesized view deviates significantly from the training views. This decline occurs due to (1) the model's difficulty in generalizing to out-of-distribution scenarios and (2) challenges in interpolating fine details caused by substantial resolution changes and occlusions. A notable case of this limitation is close-up view generation--producing views that are significantly closer to the object than those in the training set. To tackle this issue, we propose a novel approach for close-up view generation based by progressively training the 3DGS model with self-generated data. Our solution is based on three key ideas. First, we leverage the See3D model, a recently introduced 3D-aware generative model, to enhance the details of rendered views. Second, we propose a strategy to progressively expand the ``trust regions'' of the 3DGS model and update a set of reference views for See3D. Finally, we introduce a fine-tuning strategy to carefully update the 3DGS model with training data generated from the above schemes. We further define metrics for close-up views evaluation to facilitate better research on this problem. By conducting evaluations on specifically selected scenarios for close-up views, our proposed approach demonstrates a clear advantage over competitive solutions.
Abstract:The training data for fine-tuning large language models (LLMs) is typically structured as input-output pairs. However, for many tasks, there can be multiple equally valid output variations for the same input. Recent studies have observed that the choice of output variation used in training can affect the model's performance. This raises an important question: how can we generate the most effective output from the many possible response generation strategy options? Rather than relying on the traditional but resource-intensive train-and-evaluate approach, this paper proposes a scalable, approximate method for estimating the quality of a small subset of generated training data derived from the same input. We then evaluate how well this small subset of generated output fits the target model we are trying to train. We present a large-scale benchmark covering diverse reasoning-based datasets to support our study. The central idea is that a good output should closely resemble the output generated by the target LLM. We formalize this 'closeness' as the expected alignment score between a candidate output and the output sampled from the target LLM. We connect this measurement to the perplexity metric used in previous literature and demonstrate that leveraging an alignment-based metric can provide better predictions of model performance. Using this strategy, we can evaluate a small subset of the generated output from each response generation strategy option, then select the most effective strategy. We show that an LLM trained on data generated by the selected strategy could lead to a significant performance gain in many cases.
Abstract:This work investigates the capabilities of current vision-language models (VLMs) in visual understanding and attribute measurement of primitive shapes using a benchmark focused on controlled 2D shape configurations with variations in spatial positioning, occlusion, rotation, size, and shape attributes such as type, quadrant, center-coordinates, rotation, occlusion status, and color as shown in Figure 1 and supplementary Figures S3-S81. We fine-tune state-of-the-art VLMs (2B-8B parameters) using Low-Rank Adaptation (LoRA) and validate them on multiple out-of-domain (OD) scenarios from our proposed benchmark. Our findings reveal that coherent sentence-based outputs outperform tuple formats, particularly in OD scenarios with large domain gaps. Additionally, we demonstrate that scaling numeric tokens during loss computation enhances numerical approximation capabilities, further improving performance on spatial and measurement tasks. These results highlight the importance of output format design, loss scaling strategies, and robust generalization techniques in enhancing the training and fine-tuning of VLMs, particularly for tasks requiring precise spatial approximations and strong OD generalization.
Abstract:In this paper, we address the challenge of generating temporally consistent videos with motion guidance. While many existing methods depend on additional control modules or inference-time fine-tuning, recent studies suggest that effective motion guidance is achievable without altering the model architecture or requiring extra training. Such approaches offer promising compatibility with various video generation foundation models. However, existing training-free methods often struggle to maintain consistent temporal coherence across frames or to follow guided motion accurately. In this work, we propose a simple yet effective solution that combines an initial-noise-based approach with a novel motion consistency loss, the latter being our key innovation. Specifically, we capture the inter-frame feature correlation patterns of intermediate features from a video diffusion model to represent the motion pattern of the reference video. We then design a motion consistency loss to maintain similar feature correlation patterns in the generated video, using the gradient of this loss in the latent space to guide the generation process for precise motion control. This approach improves temporal consistency across various motion control tasks while preserving the benefits of a training-free setup. Extensive experiments show that our method sets a new standard for efficient, temporally coherent video generation.
Abstract:Recent advancements in Multimodal Large Language Models (MLLMs) have generated significant interest in their ability to autonomously interact with and interpret Graphical User Interfaces (GUIs). A major challenge in these systems is grounding-accurately identifying critical GUI components such as text or icons based on a GUI image and a corresponding text query. Traditionally, this task has relied on fine-tuning MLLMs with specialized training data to predict component locations directly. However, in this paper, we propose a novel Tuning-free Attention-driven Grounding (TAG) method that leverages the inherent attention patterns in pretrained MLLMs to accomplish this task without the need for additional fine-tuning. Our method involves identifying and aggregating attention maps from specific tokens within a carefully constructed query prompt. Applied to MiniCPM-Llama3-V 2.5, a state-of-the-art MLLM, our tuning-free approach achieves performance comparable to tuning-based methods, with notable success in text localization. Additionally, we demonstrate that our attention map-based grounding technique significantly outperforms direct localization predictions from MiniCPM-Llama3-V 2.5, highlighting the potential of using attention maps from pretrained MLLMs and paving the way for future innovations in this domain.
Abstract:Animal re-identification (ReID) has become an indispensable tool in ecological research, playing a critical role in tracking population dynamics, analyzing behavioral patterns, and assessing ecological impacts, all of which are vital for informed conservation strategies. Unlike human ReID, animal ReID faces significant challenges due to the high variability in animal poses, diverse environmental conditions, and the inability to directly apply pre-trained models to animal data, making the identification process across species more complex. This work introduces an innovative keypoint propagation mechanism, which utilizes a single annotated image and a pre-trained diffusion model to propagate keypoints across an entire dataset, significantly reducing the cost of manual annotation. Additionally, we enhance the Vision Transformer (ViT) by implementing Keypoint Positional Encoding (KPE) and Categorical Keypoint Positional Embedding (CKPE), enabling the ViT to learn more robust and semantically-aware representations. This provides more comprehensive and detailed keypoint representations, leading to more accurate and efficient re-identification. Our extensive experimental evaluations demonstrate that this approach significantly outperforms existing state-of-the-art methods across four wildlife datasets. The code will be publicly released.