Abstract:For structural health monitoring, continuous and automatic crack detection has been a challenging problem. This study is conducted to propose a framework of automatic crack segmentation from high-resolution images containing crack information about steel box girders of bridges. Considering the multi-scale feature of cracks, convolutional neural network architecture of Feature Pyramid Networks (FPN) for crack detection is proposed. As for input, 120 raw images are processed via two approaches (shrinking the size of images and splitting images into sub-images). Then, models with the proposed structure of FPN for crack detection are developed. The result shows all developed models can automatically detect the cracks at the raw images. By shrinking the images, the computation efficiency is improved without decreasing accuracy. Because of the separable characteristic of crack, models using the splitting method provide more accurate crack segmentations than models using the resizing method. Therefore, for high-resolution images, the FPN structure coupled with the splitting method is an promising solution for the crack segmentation and detection.
Abstract:Harnessing the robust capabilities of Large Language Models (LLMs) for narrative generation, logical reasoning, and common-sense knowledge integration, this study delves into utilizing LLMs to enhance automated radiology report generation (R2Gen). Despite the wealth of knowledge within LLMs, efficiently triggering relevant knowledge within these large models for specific tasks like R2Gen poses a critical research challenge. This paper presents KARGEN, a Knowledge-enhanced Automated radiology Report GENeration framework based on LLMs. Utilizing a frozen LLM to generate reports, the framework integrates a knowledge graph to unlock chest disease-related knowledge within the LLM to enhance the clinical utility of generated reports. This is achieved by leveraging the knowledge graph to distill disease-related features in a designed way. Since a radiology report encompasses both normal and disease-related findings, the extracted graph-enhanced disease-related features are integrated with regional image features, attending to both aspects. We explore two fusion methods to automatically prioritize and select the most relevant features. The fused features are employed by LLM to generate reports that are more sensitive to diseases and of improved quality. Our approach demonstrates promising results on the MIMIC-CXR and IU-Xray datasets.
Abstract:Neural audio synthesis methods can achieve high-fidelity and realistic sound generation by utilizing deep generative models. Such models typically rely on external labels which are often discrete as conditioning information to achieve guided sound generation. However, it remains difficult to control the subtle changes in sounds without appropriate and descriptive labels, especially given a limited dataset. This paper proposes an implicit conditioning method for neural audio synthesis using generative adversarial networks that allows for interpretable control of the acoustic features of synthesized sounds. Our technique creates a continuous conditioning space that enables timbre manipulation without relying on explicit labels. We further introduce an evaluation metric to explore controllability and demonstrate that our approach is effective in enabling a degree of controlled variation of different synthesized sound effects for in-domain and cross-domain sounds.
Abstract:In recent years, automated radiology report generation has experienced significant growth. This paper introduces MRScore, an automatic evaluation metric tailored for radiology report generation by leveraging Large Language Models (LLMs). Conventional NLG (natural language generation) metrics like BLEU are inadequate for accurately assessing the generated radiology reports, as systematically demonstrated by our observations within this paper. To address this challenge, we collaborated with radiologists to develop a framework that guides LLMs for radiology report evaluation, ensuring alignment with human analysis. Our framework includes two key components: i) utilizing GPT to generate large amounts of training data, i.e., reports with different qualities, and ii) pairing GPT-generated reports as accepted and rejected samples and training LLMs to produce MRScore as the model reward. Our experiments demonstrate MRScore's higher correlation with human judgments and superior performance in model selection compared to traditional metrics. Our code and datasets will be available on GitHub.
Abstract:This paper presents a comprehensive evaluation of GPT-4V's capabilities across diverse medical imaging tasks, including Radiology Report Generation, Medical Visual Question Answering (VQA), and Visual Grounding. While prior efforts have explored GPT-4V's performance in medical image analysis, to the best of our knowledge, our study represents the first quantitative evaluation on publicly available benchmarks. Our findings highlight GPT-4V's potential in generating descriptive reports for chest X-ray images, particularly when guided by well-structured prompts. Meanwhile, its performance on the MIMIC-CXR dataset benchmark reveals areas for improvement in certain evaluation metrics, such as CIDEr. In the domain of Medical VQA, GPT-4V demonstrates proficiency in distinguishing between question types but falls short of the VQA-RAD benchmark in terms of accuracy. Furthermore, our analysis finds the limitations of conventional evaluation metrics like the BLEU scores, advocating for the development of more semantically robust assessment methods. In the field of Visual Grounding, GPT-4V exhibits preliminary promise in recognizing bounding boxes, but its precision is lacking, especially in identifying specific medical organs and signs. Our evaluation underscores the significant potential of GPT-4V in the medical imaging domain, while also emphasizing the need for targeted refinements to fully unlock its capabilities.
Abstract:Controlling the variations of sound effects using neural audio synthesis models has been a difficult task. Differentiable digital signal processing (DDSP) provides a lightweight solution that achieves high-quality sound synthesis while enabling deterministic acoustic attribute control by incorporating pre-processed audio features and digital synthesizers. In this research, we introduce DDSP-SFX, a model based on the DDSP architecture capable of synthesizing high-quality sound effects while enabling users to control the timbre variations easily. We propose a transient modelling technique with higher objective evaluation scores and subjective ratings over impulsive signals (footsteps, gunshots). We propose a simple method that achieves timbre variation control while also allowing deterministic attribute control. We further qualitatively show the timbre transfer performance using voice as the guiding sound.
Abstract:Medical Visual Question Answering (VQA) systems play a supporting role to understand clinic-relevant information carried by medical images. The questions to a medical image include two categories: close-end (such as Yes/No question) and open-end. To obtain answers, the majority of the existing medical VQA methods relies on classification approaches, while a few works attempt to use generation approaches or a mixture of the two. The classification approaches are relatively simple but perform poorly on long open-end questions. To bridge this gap, in this paper, we propose a new Transformer based framework for medical VQA (named as Q2ATransformer), which integrates the advantages of both the classification and the generation approaches and provides a unified treatment for the close-end and open-end questions. Specifically, we introduce an additional Transformer decoder with a set of learnable candidate answer embeddings to query the existence of each answer class to a given image-question pair. Through the Transformer attention, the candidate answer embeddings interact with the fused features of the image-question pair to make the decision. In this way, despite being a classification-based approach, our method provides a mechanism to interact with the answer information for prediction like the generation-based approaches. On the other hand, by classification, we mitigate the task difficulty by reducing the search space of answers. Our method achieves new state-of-the-art performance on two medical VQA benchmarks. Especially, for the open-end questions, we achieve 79.19% on VQA-RAD and 54.85% on PathVQA, with 16.09% and 41.45% absolute improvements, respectively.