Abstract:For structural health monitoring, continuous and automatic crack detection has been a challenging problem. This study is conducted to propose a framework of automatic crack segmentation from high-resolution images containing crack information about steel box girders of bridges. Considering the multi-scale feature of cracks, convolutional neural network architecture of Feature Pyramid Networks (FPN) for crack detection is proposed. As for input, 120 raw images are processed via two approaches (shrinking the size of images and splitting images into sub-images). Then, models with the proposed structure of FPN for crack detection are developed. The result shows all developed models can automatically detect the cracks at the raw images. By shrinking the images, the computation efficiency is improved without decreasing accuracy. Because of the separable characteristic of crack, models using the splitting method provide more accurate crack segmentations than models using the resizing method. Therefore, for high-resolution images, the FPN structure coupled with the splitting method is an promising solution for the crack segmentation and detection.
Abstract:Current autonomous building research primarily focuses on energy efficiency and automation. While traditional artificial intelligence has advanced autonomous building research, it often relies on predefined rules and struggles to adapt to complex, evolving building operations. Moreover, the centralized organizational structures of facilities management hinder transparency in decision-making, limiting true building autonomy. Research on decentralized governance and adaptive building infrastructure, which could overcome these challenges, remains relatively unexplored. This paper addresses these limitations by introducing a novel Decentralized Autonomous Building Cyber-Physical System framework that integrates Decentralized Autonomous Organizations, Large Language Models, and digital twins to create a smart, self-managed, operational, and financially autonomous building infrastructure. This study develops a full-stack decentralized application to facilitate decentralized governance of building infrastructure. An LLM-based artificial intelligence assistant is developed to provide intuitive human-building interaction for blockchain and building operation management-related tasks and enable autonomous building operation. Six real-world scenarios were tested to evaluate the autonomous building system's workability, including building revenue and expense management, AI-assisted facility control, and autonomous adjustment of building systems. Results indicate that the prototype successfully executes these operations, confirming the framework's suitability for developing building infrastructure with decentralized governance and autonomous operation.
Abstract:Multi-damage is common in reinforced concrete structures and leads to the requirement of large number of neural networks, parameters and data storage, if convolutional neural network (CNN) is used for damage recognition. In addition, conventional CNN experiences catastrophic forgetting and training inefficiency as the number of tasks increases during continual learning, leading to large accuracy decrease of previous learned tasks. To address these problems, this study proposes a continuallearning-based damage recognition model (CLDRM) which integrates the learning without forgetting continual learning method into the ResNet-34 architecture for the recognition of damages in RC structures as well as relevant structural components. Three experiments for four recognition tasks were designed to validate the feasibility and effectiveness of the CLDRM framework. In this way, it reduces both the prediction time and data storage by about 75% in four tasks of continuous learning. Three experiments for four recognition tasks were designed to validate the feasibility and effectiveness of the CLDRM framework. By gradual feature fusion, CLDRM outperformed other methods by managed to achieve high accuracy in the damage recognition and classification. As the number of recognition tasks increased, CLDRM also experienced smaller decrease of the previous learned tasks. Results indicate that the CLDRM framework successfully performs damage recognition and classification with reasonable accuracy and effectiveness.