Abstract:Advances in endoscopy use in surgeries face challenges like inadequate lighting. Deep learning, notably the Denoising Diffusion Probabilistic Model (DDPM), holds promise for low-light image enhancement in the medical field. However, DDPMs are computationally demanding and slow, limiting their practical medical applications. To bridge this gap, we propose a lightweight DDPM, dubbed LighTDiff. It adopts a T-shape model architecture to capture global structural information using low-resolution images and gradually recover the details in subsequent denoising steps. We further prone the model to significantly reduce the model size while retaining performance. While discarding certain downsampling operations to save parameters leads to instability and low efficiency in convergence during the training, we introduce a Temporal Light Unit (TLU), a plug-and-play module, for more stable training and better performance. TLU associates time steps with denoised image features, establishing temporal dependencies of the denoising steps and improving denoising outcomes. Moreover, while recovering images using the diffusion model, potential spectral shifts were noted. We further introduce a Chroma Balancer (CB) to mitigate this issue. Our LighTDiff outperforms many competitive LLIE methods with exceptional computational efficiency.
Abstract:Current methods focusing on medical image segmentation suffer from incorrect annotations, which is known as the noisy label issue. Most medical image segmentation with noisy labels methods utilize either noise transition matrix, noise-robust loss functions or pseudo-labeling methods, while none of the current research focuses on clean label disentanglement. We argue that the main reason is that the severe class-imbalanced issue will lead to the inaccuracy of the selected ``clean'' labels, thus influencing the robustness of the model against the noises. In this work, we come up with a simple but efficient class-balanced sampling strategy to tackle the class-imbalanced problem, which enables our newly proposed clean label disentangling framework to successfully select clean labels from the given label sets and encourages the model to learn from the correct annotations. However, such a method will filter out too many annotations which may also contain useful information. Therefore, we further extend our clean label disentangling framework to a new noisy feature-aided clean label disentangling framework, which takes the full annotations into utilization to learn more semantics. Extensive experiments have validated the effectiveness of our methods, where our methods achieve new state-of-the-art performance. Our code is available at https://github.com/xiaoyao3302/2BDenoise.
Abstract:Deep learning based image enhancement models have largely improved the readability of fundus images in order to decrease the uncertainty of clinical observations and the risk of misdiagnosis. However, due to the difficulty of acquiring paired real fundus images at different qualities, most existing methods have to adopt synthetic image pairs as training data. The domain shift between the synthetic and the real images inevitably hinders the generalization of such models on clinical data. In this work, we propose an end-to-end optimized teacher-student framework to simultaneously conduct image enhancement and domain adaptation. The student network uses synthetic pairs for supervised enhancement, and regularizes the enhancement model to reduce domain-shift by enforcing teacher-student prediction consistency on the real fundus images without relying on enhanced ground-truth. Moreover, we also propose a novel multi-stage multi-attention guided enhancement network (MAGE-Net) as the backbones of our teacher and student network. Our MAGE-Net utilizes multi-stage enhancement module and retinal structure preservation module to progressively integrate the multi-scale features and simultaneously preserve the retinal structures for better fundus image quality enhancement. Comprehensive experiments on both real and synthetic datasets demonstrate that our framework outperforms the baseline approaches. Moreover, our method also benefits the downstream clinical tasks.