Abstract:Conventional class-guided diffusion models generally succeed in generating images with correct semantic content, but often struggle with texture details. This limitation stems from the usage of class priors, which only provide coarse and limited conditional information. To address this issue, we propose Diffusion on Diffusion (DoD), an innovative multi-stage generation framework that first extracts visual priors from previously generated samples, then provides rich guidance for the diffusion model leveraging visual priors from the early stages of diffusion sampling. Specifically, we introduce a latent embedding module that employs a compression-reconstruction approach to discard redundant detail information from the conditional samples in each stage, retaining only the semantic information for guidance. We evaluate DoD on the popular ImageNet-$256 \times 256$ dataset, reducing 7$\times$ training cost compared to SiT and DiT with even better performance in terms of the FID-50K score. Our largest model DoD-XL achieves an FID-50K score of 1.83 with only 1 million training steps, which surpasses other state-of-the-art methods without bells and whistles during inference.
Abstract:Class Incremental Semantic Segmentation (CISS) aims to mitigate catastrophic forgetting by maintaining a balance between previously learned and newly introduced knowledge. Existing methods, primarily based on regularization techniques like knowledge distillation, help preserve old knowledge but often face challenges in effectively integrating new knowledge, resulting in limited overall improvement. Endpoints Weight Fusion (EWF) method, while simple, effectively addresses some of these limitations by dynamically fusing the model weights from previous steps with those from the current step, using a fusion parameter alpha determined by the relative number of previously known classes and newly introduced classes. However, the simplicity of the alpha calculation may limit its ability to fully capture the complexities of different task scenarios, potentially leading to suboptimal fusion outcomes. In this paper, we propose an enhanced approach called Adaptive Weight Fusion (AWF), which introduces an alternating training strategy for the fusion parameter, allowing for more flexible and adaptive weight integration. AWF achieves superior performance by better balancing the retention of old knowledge with the learning of new classes, significantly improving results on benchmark CISS tasks compared to the original EWF. And our experiment code will be released on Github.
Abstract:Harnessing the robust capabilities of Large Language Models (LLMs) for narrative generation, logical reasoning, and common-sense knowledge integration, this study delves into utilizing LLMs to enhance automated radiology report generation (R2Gen). Despite the wealth of knowledge within LLMs, efficiently triggering relevant knowledge within these large models for specific tasks like R2Gen poses a critical research challenge. This paper presents KARGEN, a Knowledge-enhanced Automated radiology Report GENeration framework based on LLMs. Utilizing a frozen LLM to generate reports, the framework integrates a knowledge graph to unlock chest disease-related knowledge within the LLM to enhance the clinical utility of generated reports. This is achieved by leveraging the knowledge graph to distill disease-related features in a designed way. Since a radiology report encompasses both normal and disease-related findings, the extracted graph-enhanced disease-related features are integrated with regional image features, attending to both aspects. We explore two fusion methods to automatically prioritize and select the most relevant features. The fused features are employed by LLM to generate reports that are more sensitive to diseases and of improved quality. Our approach demonstrates promising results on the MIMIC-CXR and IU-Xray datasets.
Abstract:Point cloud analysis has seen substantial advancements due to deep learning, although previous Transformer-based methods excel at modeling long-range dependencies on this task, their computational demands are substantial. Conversely, the Mamba offers greater efficiency but shows limited potential compared with Transformer-based methods. In this study, we introduce PoinTramba, a pioneering hybrid framework that synergies the analytical power of Transformer with the remarkable computational efficiency of Mamba for enhanced point cloud analysis. Specifically, our approach first segments point clouds into groups, where the Transformer meticulously captures intricate intra-group dependencies and produces group embeddings, whose inter-group relationships will be simultaneously and adeptly captured by efficient Mamba architecture, ensuring comprehensive analysis. Unlike previous Mamba approaches, we introduce a bi-directional importance-aware ordering (BIO) strategy to tackle the challenges of random ordering effects. This innovative strategy intelligently reorders group embeddings based on their calculated importance scores, significantly enhancing Mamba's performance and optimizing the overall analytical process. Our framework achieves a superior balance between computational efficiency and analytical performance by seamlessly integrating these advanced techniques, marking a substantial leap forward in point cloud analysis. Extensive experiments on datasets such as ScanObjectNN, ModelNet40, and ShapeNetPart demonstrate the effectiveness of our approach, establishing a new state-of-the-art analysis benchmark on point cloud recognition. For the first time, this paradigm leverages the combined strengths of both Transformer and Mamba architectures, facilitating a new standard in the field. The code is available at https://github.com/xiaoyao3302/PoinTramba.
Abstract:Advances in endoscopy use in surgeries face challenges like inadequate lighting. Deep learning, notably the Denoising Diffusion Probabilistic Model (DDPM), holds promise for low-light image enhancement in the medical field. However, DDPMs are computationally demanding and slow, limiting their practical medical applications. To bridge this gap, we propose a lightweight DDPM, dubbed LighTDiff. It adopts a T-shape model architecture to capture global structural information using low-resolution images and gradually recover the details in subsequent denoising steps. We further prone the model to significantly reduce the model size while retaining performance. While discarding certain downsampling operations to save parameters leads to instability and low efficiency in convergence during the training, we introduce a Temporal Light Unit (TLU), a plug-and-play module, for more stable training and better performance. TLU associates time steps with denoised image features, establishing temporal dependencies of the denoising steps and improving denoising outcomes. Moreover, while recovering images using the diffusion model, potential spectral shifts were noted. We further introduce a Chroma Balancer (CB) to mitigate this issue. Our LighTDiff outperforms many competitive LLIE methods with exceptional computational efficiency.
Abstract:Content-adaptive compression is crucial for enhancing the adaptability of the pre-trained neural codec for various contents. Although these methods have been very practical in neural image compression (NIC), their application in neural video compression (NVC) is still limited due to two main aspects: 1), video compression relies heavily on temporal redundancy, therefore updating just one or a few frames can lead to significant errors accumulating over time; 2), NVC frameworks are generally more complex, with many large components that are not easy to update quickly during encoding. To address the previously mentioned challenges, we have developed a content-adaptive NVC technique called Group-aware Parameter-Efficient Updating (GPU). Initially, to minimize error accumulation, we adopt a group-aware approach for updating encoder parameters. This involves adopting a patch-based Group of Pictures (GoP) training strategy to segment a video into patch-based GoPs, which will be updated to facilitate a globally optimized domain-transferable solution. Subsequently, we introduce a parameter-efficient delta-tuning strategy, which is achieved by integrating several light-weight adapters into each coding component of the encoding process by both serial and parallel configuration. Such architecture-agnostic modules stimulate the components with large parameters, thereby reducing both the update cost and the encoding time. We incorporate our GPU into the latest NVC framework and conduct comprehensive experiments, whose results showcase outstanding video compression efficiency across four video benchmarks and adaptability of one medical image benchmark.
Abstract:In recent years, automated radiology report generation has experienced significant growth. This paper introduces MRScore, an automatic evaluation metric tailored for radiology report generation by leveraging Large Language Models (LLMs). Conventional NLG (natural language generation) metrics like BLEU are inadequate for accurately assessing the generated radiology reports, as systematically demonstrated by our observations within this paper. To address this challenge, we collaborated with radiologists to develop a framework that guides LLMs for radiology report evaluation, ensuring alignment with human analysis. Our framework includes two key components: i) utilizing GPT to generate large amounts of training data, i.e., reports with different qualities, and ii) pairing GPT-generated reports as accepted and rejected samples and training LLMs to produce MRScore as the model reward. Our experiments demonstrate MRScore's higher correlation with human judgments and superior performance in model selection compared to traditional metrics. Our code and datasets will be available on GitHub.
Abstract:While semi-supervised learning (SSL) has yielded promising results, the more realistic SSL scenario remains to be explored, in which the unlabeled data exhibits extremely high recognition difficulty, e.g., fine-grained visual classification in the context of SSL (SS-FGVC). The increased recognition difficulty on fine-grained unlabeled data spells disaster for pseudo-labeling accuracy, resulting in poor performance of the SSL model. To tackle this challenge, we propose Soft Label Selection with Confidence-Aware Clustering based on Class Transition Tracking (SoC) by reconstructing the pseudo-label selection process by jointly optimizing Expansion Objective and Shrinkage Objective, which is based on a soft label manner. Respectively, the former objective encourages soft labels to absorb more candidate classes to ensure the attendance of ground-truth class, while the latter encourages soft labels to reject more noisy classes, which is theoretically proved to be equivalent to entropy minimization. In comparisons with various state-of-the-art methods, our approach demonstrates its superior performance in SS-FGVC. Checkpoints and source code are available at https://github.com/NJUyued/SoC4SS-FGVC.
Abstract:Despite the success of Large Language Models (LLMs) in general image tasks, a gap persists in the medical field for a multimodal large model adept at handling the nuanced diversity of medical images. Addressing this, we propose MedXChat, a unified multimodal large model designed for seamless interactions between medical assistants and users. MedXChat encompasses three key functionalities: CXR(Chest X-ray)-to-Report generation, CXR-based visual question-answering (VQA), and Text-to-CXR synthesis. Our contributions are as follows. Firstly, our model showcases exceptional cross-task adaptability, displaying adeptness across all three defined tasks and outperforming the benchmark models on the MIMIC dataset in medical multimodal applications. Secondly, we introduce an innovative Text-to-CXR synthesis approach that utilizes instruction-following capabilities within the Stable Diffusion (SD) architecture. This technique integrates smoothly with the existing model framework, requiring no extra parameters, thereby maintaining the SD's generative strength while also bestowing upon it the capacity to render fine-grained medical images with high fidelity. Comprehensive experiments validate MedXChat's synergistic enhancement across all tasks. Our instruction data and model will be open-sourced.
Abstract:Semi-supervised medical image segmentation studies have shown promise in training models with limited labeled data. However, current dominant teacher-student based approaches can suffer from the confirmation bias. To address this challenge, we propose AD-MT, an alternate diverse teaching approach in a teacher-student framework. It involves a single student model and two non-trainable teacher models that are momentum-updated periodically and randomly in an alternate fashion. To mitigate the confirmation bias from the diverse supervision, the core of AD-MT lies in two proposed modules: the Random Periodic Alternate (RPA) Updating Module and the Conflict-Combating Module (CCM). The RPA schedules the alternating diverse updating process with complementary data batches, distinct data augmentation, and random switching periods to encourage diverse reasoning from different teaching perspectives. The CCM employs an entropy-based ensembling strategy to encourage the model to learn from both the consistent and conflicting predictions between the teachers. Experimental results demonstrate the effectiveness and superiority of our AD-MT on the 2D and 3D medical segmentation benchmarks across various semi-supervised settings.