Abstract:A plethora of text-guided image editing methods has recently been developed by leveraging the impressive capabilities of large-scale diffusion-based generative models especially Stable Diffusion. Despite the success of diffusion models in producing high-quality images, their application to small object generation has been limited due to difficulties in aligning cross-modal attention maps between text and these objects. Our approach offers a training-free method that significantly mitigates this alignment issue with local and global attention guidance , enhancing the model's ability to accurately render small objects in accordance with textual descriptions. We detail the methodology in our approach, emphasizing its divergence from traditional generation techniques and highlighting its advantages. What's more important is that we also provide~\textit{SOEBench} (Small Object Editing), a standardized benchmark for quantitatively evaluating text-based small object generation collected from \textit{MSCOCO} and \textit{OpenImage}. Preliminary results demonstrate the effectiveness of our method, showing marked improvements in the fidelity and accuracy of small object generation compared to existing models. This advancement not only contributes to the field of AI and computer vision but also opens up new possibilities for applications in various industries where precise image generation is critical. We will release our dataset on our project page: \href{https://soebench.github.io/}{https://soebench.github.io/}.
Abstract:The balance between exploration (Er) and exploitation (Ei) determines the generalization performance of the particle swarm optimization (PSO) algorithm on different problems. Although the insufficient balance caused by global best being located near a local minimum has been widely researched, few scholars have systematically paid attention to two behaviors about personal best position (P) and global best position (G) existing in PSO. 1) P's uncontrollable-exploitation and involuntary-exploration guidance behavior. 2) G's full-time and global guidance behavior, each of which negatively affects the balance of Er and Ei. With regards to this, we firstly discuss the two behaviors, unveiling the mechanisms by which they affect the balance, and further pinpoint three key points for better balancing Er and Ei: eliminating the coupling between P and G, empowering P with controllable-exploitation and voluntary-exploration guidance behavior, controlling G's full-time and global guidance behavior. Then, we present a dual-channel PSO algorithm based on adaptive balance search (DCPSO-ABS). This algorithm entails a dual-channel framework to mitigate the interaction of P and G, aiding in regulating the behaviors of P and G, and meanwhile an adaptive balance search strategy for empowering P with voluntary-exploration and controllable-exploitation guidance behavior as well as adaptively controlling G's full-time and global guidance behavior. Finally, three kinds of experiments on 57 benchmark functions are designed to demonstrate that our proposed algorithm has stronger generalization performance than selected state-of-the-art algorithms.
Abstract:Point cloud analysis has seen substantial advancements due to deep learning, although previous Transformer-based methods excel at modeling long-range dependencies on this task, their computational demands are substantial. Conversely, the Mamba offers greater efficiency but shows limited potential compared with Transformer-based methods. In this study, we introduce PoinTramba, a pioneering hybrid framework that synergies the analytical power of Transformer with the remarkable computational efficiency of Mamba for enhanced point cloud analysis. Specifically, our approach first segments point clouds into groups, where the Transformer meticulously captures intricate intra-group dependencies and produces group embeddings, whose inter-group relationships will be simultaneously and adeptly captured by efficient Mamba architecture, ensuring comprehensive analysis. Unlike previous Mamba approaches, we introduce a bi-directional importance-aware ordering (BIO) strategy to tackle the challenges of random ordering effects. This innovative strategy intelligently reorders group embeddings based on their calculated importance scores, significantly enhancing Mamba's performance and optimizing the overall analytical process. Our framework achieves a superior balance between computational efficiency and analytical performance by seamlessly integrating these advanced techniques, marking a substantial leap forward in point cloud analysis. Extensive experiments on datasets such as ScanObjectNN, ModelNet40, and ShapeNetPart demonstrate the effectiveness of our approach, establishing a new state-of-the-art analysis benchmark on point cloud recognition. For the first time, this paradigm leverages the combined strengths of both Transformer and Mamba architectures, facilitating a new standard in the field. The code is available at https://github.com/xiaoyao3302/PoinTramba.
Abstract:In this paper, we delve into a new task known as small object editing (SOE), which focuses on text-based image inpainting within a constrained, small-sized area. Despite the remarkable success have been achieved by current image inpainting approaches, their application to the SOE task generally results in failure cases such as Object Missing, Text-Image Mismatch, and Distortion. These failures stem from the limited use of small-sized objects in training datasets and the downsampling operations employed by U-Net models, which hinders accurate generation. To overcome these challenges, we introduce a novel training-based approach, SOEDiff, aimed at enhancing the capability of baseline models like StableDiffusion in editing small-sized objects while minimizing training costs. Specifically, our method involves two key components: SO-LoRA, which efficiently fine-tunes low-rank matrices, and Cross-Scale Score Distillation loss, which leverages high-resolution predictions from the pre-trained teacher diffusion model. Our method presents significant improvements on the test dataset collected from MSCOCO and OpenImage, validating the effectiveness of our proposed method in small object editing. In particular, when comparing SOEDiff with SD-I model on the OpenImage-f dataset, we observe a 0.99 improvement in CLIP-Score and a reduction of 2.87 in FID. Our project page can be found in https://soediff.github.io/.
Abstract:Compartmentalization effectively prevents initial corruption from turning into a successful attack. This paper presents O2C, a pioneering system designed to enforce OS kernel compartmentalization on the fly. It not only provides immediate remediation for sudden threats but also maintains consistent system availability through the enforcement process. O2C is empowered by the newest advancements of the eBPF ecosystem which allows to instrument eBPF programs that perform enforcement actions into the kernel at runtime. O2C takes the lead in embedding a machine learning model into eBPF programs, addressing unique challenges in on-the-fly compartmentalization. Our comprehensive evaluation shows that O2C effectively confines damage within the compartment. Further, we validate that decision tree is optimally suited for O2C owing to its advantages in processing tabular data, its explainable nature, and its compliance with the eBPF ecosystem. Last but not least, O2C is lightweight, showing negligible overhead and excellent sacalability system-wide.
Abstract:Semi-supervised medical image segmentation studies have shown promise in training models with limited labeled data. However, current dominant teacher-student based approaches can suffer from the confirmation bias. To address this challenge, we propose AD-MT, an alternate diverse teaching approach in a teacher-student framework. It involves a single student model and two non-trainable teacher models that are momentum-updated periodically and randomly in an alternate fashion. To mitigate the confirmation bias from the diverse supervision, the core of AD-MT lies in two proposed modules: the Random Periodic Alternate (RPA) Updating Module and the Conflict-Combating Module (CCM). The RPA schedules the alternating diverse updating process with complementary data batches, distinct data augmentation, and random switching periods to encourage diverse reasoning from different teaching perspectives. The CCM employs an entropy-based ensembling strategy to encourage the model to learn from both the consistent and conflicting predictions between the teachers. Experimental results demonstrate the effectiveness and superiority of our AD-MT on the 2D and 3D medical segmentation benchmarks across various semi-supervised settings.
Abstract:Current methods focusing on medical image segmentation suffer from incorrect annotations, which is known as the noisy label issue. Most medical image segmentation with noisy labels methods utilize either noise transition matrix, noise-robust loss functions or pseudo-labeling methods, while none of the current research focuses on clean label disentanglement. We argue that the main reason is that the severe class-imbalanced issue will lead to the inaccuracy of the selected ``clean'' labels, thus influencing the robustness of the model against the noises. In this work, we come up with a simple but efficient class-balanced sampling strategy to tackle the class-imbalanced problem, which enables our newly proposed clean label disentangling framework to successfully select clean labels from the given label sets and encourages the model to learn from the correct annotations. However, such a method will filter out too many annotations which may also contain useful information. Therefore, we further extend our clean label disentangling framework to a new noisy feature-aided clean label disentangling framework, which takes the full annotations into utilization to learn more semantics. Extensive experiments have validated the effectiveness of our methods, where our methods achieve new state-of-the-art performance. Our code is available at https://github.com/xiaoyao3302/2BDenoise.
Abstract:Unsupervised domain adaptation is a critical challenge in the field of point cloud analysis, as models trained on one set of data often struggle to perform well in new scenarios due to domain shifts. Previous works tackle the problem by using adversarial training or self-supervised learning for feature extractor adaptation, but ensuring that features extracted from the target domain can be distinguished by the source-supervised classifier remains challenging. In this work, we propose a novel approach called progressive target-styled feature augmentation (PTSFA). Unlike previous works that focus on feature extractor adaptation, our PTSFA approach focuses on classifier adaptation. It aims to empower the classifier to recognize target-styled source features and progressively adapt to the target domain. To enhance the reliability of predictions within the PTSFA framework and encourage discriminative feature extraction, we further introduce a new intermediate domain approaching (IDA) strategy. We validate our method on the benchmark datasets, where our method achieves new state-of-the-art performance. Our code is available at https://github.com/xiaoyao3302/PTSFA.
Abstract:Semi-supervised semantic segmentation has recently gained increasing research interest as it can reduce the requirement for large-scale fully-annotated training data by effectively exploiting large amounts of unlabelled data. The current methods often suffer from the confirmation bias from the pseudo-labelling process, which can be alleviated by the co-training framework. The current co-training-based semi-supervised semantic segmentation methods rely on hand-crafted perturbations to prevent the different sub-nets from collapsing into each other, but these artificial perturbations cannot lead to the optimal solution. In this work, we propose a new conflict-based cross-view consistency (CCVC) method based on a two-branch co-training framework for semi-supervised semantic segmentation. Our work aims at enforcing the two sub-nets to learn informative features from irrelevant views. In particular, we first propose a new cross-view consistency (CVC) strategy that encourages the two sub-nets to learn distinct features from the same input by introducing a feature discrepancy loss, while these distinct features are expected to generate consistent prediction scores of the input. The CVC strategy helps to prevent the two sub-nets from stepping into the collapse. In addition, we further propose a conflict-based pseudo-labelling (CPL) method to guarantee the model will learn more useful information from conflicting predictions, which will lead to a stable training process. We validate our new semi-supervised semantic segmentation approach on the widely used benchmark datasets PASCAL VOC 2012 and Cityscapes, where our method achieves new state-of-the-art performance.