Abstract:Anomaly detection on dynamic graphs refers to detecting entities whose behaviors obviously deviate from the norms observed within graphs and their temporal information. This field has drawn increasing attention due to its application in finance, network security, social networks, and more. However, existing methods face two challenges: dynamic structure constructing challenge - difficulties in capturing graph structure with complex time information and negative sampling challenge - unable to construct excellent negative samples for unsupervised learning. To address these challenges, we propose Unsupervised Generative Anomaly Detection on Dynamic Graphs (GADY). To tackle the first challenge, we propose a continuous dynamic graph model to capture the fine-grained information, which breaks the limit of existing discrete methods. Specifically, we employ a message-passing framework combined with positional features to get edge embeddings, which are decoded to identify anomalies. For the second challenge, we pioneer the use of Generative Adversarial Networks to generate negative interactions. Moreover, we design a loss function to alter the training goal of the generator while ensuring the diversity and quality of generated samples. Extensive experiments demonstrate that our proposed GADY significantly outperforms the previous state-of-the-art method on three real-world datasets. Supplementary experiments further validate the effectiveness of our model design and the necessity of each module.
Abstract:Large language models (LLMs) demonstrate remarkable performance on knowledge-intensive tasks, suggesting that real-world knowledge is encoded in their model parameters. However, besides explorations on a few probing tasks in limited knowledge domains, it is not well understood how to evaluate LLMs' knowledge systematically and how well their knowledge abilities generalize, across a spectrum of knowledge domains and progressively complex task formats. To this end, we propose KGQuiz, a knowledge-intensive benchmark to comprehensively investigate the knowledge generalization abilities of LLMs. KGQuiz is a scalable framework constructed from triplet-based knowledge, which covers three knowledge domains and consists of five tasks with increasing complexity: true-or-false, multiple-choice QA, blank filling, factual editing, and open-ended knowledge generation. To gain a better understanding of LLMs' knowledge abilities and their generalization, we evaluate 10 open-source and black-box LLMs on the KGQuiz benchmark across the five knowledge-intensive tasks and knowledge domains. Extensive experiments demonstrate that LLMs achieve impressive performance in straightforward knowledge QA tasks, while settings and contexts requiring more complex reasoning or employing domain-specific facts still present significant challenges. We envision KGQuiz as a testbed to analyze such nuanced variations in performance across domains and task formats, and ultimately to understand, evaluate, and improve LLMs' knowledge abilities across a wide spectrum of knowledge domains and tasks.