Abstract:LMMs have shown impressive visual understanding capabilities, with the potential to be applied in agents, which demand strong reasoning and planning abilities. Nevertheless, existing benchmarks mostly assess their reasoning abilities in language part, where the chain-of-thought is entirely composed of text.We consider the scenario where visual signals are continuously updated and required along the decision making process. Such vision-in-the-chain reasoning paradigm is more aligned with the needs of multimodal agents, while being rarely evaluated. In this paper, we introduce MageBench, a reasoning capability oriented multimodal agent benchmark that, while having light-weight environments, poses significant reasoning challenges and holds substantial practical value. This benchmark currently includes three types of environments: WebUI, Sokoban, and Football, comprising a total of 483 different scenarios. It thoroughly validates the agent's knowledge and engineering capabilities, visual intelligence, and interaction skills. The results show that only a few product-level models are better than random acting, and all of them are far inferior to human-level. More specifically, we found current models severely lack the ability to modify their planning based on visual feedback, as well as visual imagination, interleaved image-text long context handling, and other abilities. We hope that our work will provide optimization directions for LMM from the perspective of being an agent. We release our code and data at https://github.com/microsoft/MageBench.
Abstract:Image tokenizers play a critical role in shaping the performance of subsequent generative models. Since the introduction of VQ-GAN, discrete image tokenization has undergone remarkable advancements. Improvements in architecture, quantization techniques, and training recipes have significantly enhanced both image reconstruction and the downstream generation quality. In this paper, we present XQ-GAN, an image tokenization framework designed for both image reconstruction and generation tasks. Our framework integrates state-of-the-art quantization techniques, including vector quantization (VQ), residual quantization (RQ), multi-scale residual quantization (MSVQ), product quantization (PQ), lookup-free quantization (LFQ), and binary spherical quantization (BSQ), within a highly flexible and customizable training environment. On the standard ImageNet 256x256 benchmark, our released model achieves an rFID of 0.64, significantly surpassing MAGVIT-v2 (0.9 rFID) and VAR (0.9 rFID). Furthermore, we demonstrate that using XQ-GAN as a tokenizer improves gFID metrics alongside rFID. For instance, with the same VAR architecture, XQ-GAN+VAR achieves a gFID of 2.6, outperforming VAR's 3.3 gFID by a notable margin. To support further research, we provide pre-trained weights of different image tokenizers for the community to directly train the subsequent generative models on it or fine-tune for specialized tasks.
Abstract:Commercial video generation models have exhibited realistic, high-fidelity results but are still restricted to limited access. One crucial obstacle for large-scale applications is the expensive training and inference cost. In this paper, we argue that videos contain much more redundant information than images, thus can be encoded by very few motion latents based on a content image. Towards this goal, we design an image-conditioned VAE to encode a video to an extremely compressed motion latent space. This magic Reducio charm enables 64x reduction of latents compared to a common 2D VAE, without sacrificing the quality. Training diffusion models on such a compact representation easily allows for generating 1K resolution videos. We then adopt a two-stage video generation paradigm, which performs text-to-image and text-image-to-video sequentially. Extensive experiments show that our Reducio-DiT achieves strong performance in evaluation, though trained with limited GPU resources. More importantly, our method significantly boost the efficiency of video LDMs both in training and inference. We train Reducio-DiT in around 3.2K training hours in total and generate a 16-frame 1024*1024 video clip within 15.5 seconds on a single A100 GPU. Code released at https://github.com/microsoft/Reducio-VAE .
Abstract:Image tokenizers are crucial for visual generative models, e.g., diffusion models (DMs) and autoregressive (AR) models, as they construct the latent representation for modeling. Increasing token length is a common approach to improve the image reconstruction quality. However, tokenizers with longer token lengths are not guaranteed to achieve better generation quality. There exists a trade-off between reconstruction and generation quality regarding token length. In this paper, we investigate the impact of token length on both image reconstruction and generation and provide a flexible solution to the tradeoff. We propose ImageFolder, a semantic tokenizer that provides spatially aligned image tokens that can be folded during autoregressive modeling to improve both generation efficiency and quality. To enhance the representative capability without increasing token length, we leverage dual-branch product quantization to capture different contexts of images. Specifically, semantic regularization is introduced in one branch to encourage compacted semantic information while another branch is designed to capture the remaining pixel-level details. Extensive experiments demonstrate the superior quality of image generation and shorter token length with ImageFolder tokenizer.
Abstract:Audio generation has achieved remarkable progress with the advance of sophisticated generative models, such as diffusion models (DMs) and autoregressive (AR) models. However, due to the naturally significant sequence length of audio, the efficiency of audio generation remains an essential issue to be addressed, especially for AR models that are incorporated in large language models (LLMs). In this paper, we analyze the token length of audio tokenization and propose a novel \textbf{S}cale-level \textbf{A}udio \textbf{T}okenizer (SAT), with improved residual quantization. Based on SAT, a scale-level \textbf{A}coustic \textbf{A}uto\textbf{R}egressive (AAR) modeling framework is further proposed, which shifts the next-token AR prediction to next-scale AR prediction, significantly reducing the training cost and inference time. To validate the effectiveness of the proposed approach, we comprehensively analyze design choices and demonstrate the proposed AAR framework achieves a remarkable \textbf{35}$\times$ faster inference speed and +\textbf{1.33} Fr\'echet Audio Distance (FAD) against baselines on the AudioSet benchmark. Code: \url{https://github.com/qiuk2/AAR}.
Abstract:Conditional visual generation has witnessed remarkable progress with the advent of diffusion models (DMs), especially in tasks like control-to-image generation. However, challenges such as expensive computational cost, high inference latency, and difficulties of integration with large language models (LLMs) have necessitated exploring alternatives to DMs. This paper introduces ControlVAR, a novel framework that explores pixel-level controls in visual autoregressive (VAR) modeling for flexible and efficient conditional generation. In contrast to traditional conditional models that learn the conditional distribution, ControlVAR jointly models the distribution of image and pixel-level conditions during training and imposes conditional controls during testing. To enhance the joint modeling, we adopt the next-scale AR prediction paradigm and unify control and image representations. A teacher-forcing guidance strategy is proposed to further facilitate controllable generation with joint modeling. Extensive experiments demonstrate the superior efficacy and flexibility of ControlVAR across various conditional generation tasks against popular conditional DMs, \eg, ControlNet and T2I-Adaptor.
Abstract:Referring perception, which aims at grounding visual objects with multimodal referring guidance, is essential for bridging the gap between humans, who provide instructions, and the environment where intelligent systems perceive. Despite progress in this field, the robustness of referring perception models (RPMs) against disruptive perturbations is not well explored. This work thoroughly assesses the resilience of RPMs against various perturbations in both general and specific contexts. Recognizing the complex nature of referring perception tasks, we present a comprehensive taxonomy of perturbations, and then develop a versatile toolbox for synthesizing and evaluating the effects of composite disturbances. Employing this toolbox, we construct $\text{R}^2$-Bench, a benchmark for assessing the Robustness of Referring perception models under noisy conditions across five key tasks. Moreover, we propose the $\text{R}^2$-Agent, an LLM-based agent that simplifies and automates model evaluation via natural language instructions. Our investigation uncovers the vulnerabilities of current RPMs to various perturbations and provides tools for assessing model robustness, potentially promoting the safe and resilient integration of intelligent systems into complex real-world scenarios.
Abstract:Training foundation models on extensive datasets and then finetuning them on specific tasks has emerged as the mainstream approach in artificial intelligence. However, the model robustness, which is a critical aspect for safety, is often optimized for each specific task rather than at the pretraining stage. In this paper, we propose a method for pretraining certifiably robust models that can be readily finetuned for adaptation to a particular task. A key challenge is dealing with the compromise between semantic learning and robustness. We address this with a simple yet highly effective strategy based on significantly broadening the pretraining data distribution, which is shown to greatly benefit finetuning for downstream tasks. Through pretraining on a mixture of clean and various noisy images, we find that surprisingly strong certified accuracy can be achieved even when finetuning on only clean images. Furthermore, this strategy requires just a single model to deal with various noise levels, thus substantially reducing computational costs in relation to previous works that employ multiple models. Despite using just one model, our method can still yield results that are on par with, or even superior to, existing multi-model methods.
Abstract:We present MicroCinema, a straightforward yet effective framework for high-quality and coherent text-to-video generation. Unlike existing approaches that align text prompts with video directly, MicroCinema introduces a Divide-and-Conquer strategy which divides the text-to-video into a two-stage process: text-to-image generation and image\&text-to-video generation. This strategy offers two significant advantages. a) It allows us to take full advantage of the recent advances in text-to-image models, such as Stable Diffusion, Midjourney, and DALLE, to generate photorealistic and highly detailed images. b) Leveraging the generated image, the model can allocate less focus to fine-grained appearance details, prioritizing the efficient learning of motion dynamics. To implement this strategy effectively, we introduce two core designs. First, we propose the Appearance Injection Network, enhancing the preservation of the appearance of the given image. Second, we introduce the Appearance Noise Prior, a novel mechanism aimed at maintaining the capabilities of pre-trained 2D diffusion models. These design elements empower MicroCinema to generate high-quality videos with precise motion, guided by the provided text prompts. Extensive experiments demonstrate the superiority of the proposed framework. Concretely, MicroCinema achieves SOTA zero-shot FVD of 342.86 on UCF-101 and 377.40 on MSR-VTT. See https://wangyanhui666.github.io/MicroCinema.github.io/ for video samples.
Abstract:We present ART$\boldsymbol{\cdot}$V, an efficient framework for auto-regressive video generation with diffusion models. Unlike existing methods that generate entire videos in one-shot, ART$\boldsymbol{\cdot}$V generates a single frame at a time, conditioned on the previous ones. The framework offers three distinct advantages. First, it only learns simple continual motions between adjacent frames, therefore avoiding modeling complex long-range motions that require huge training data. Second, it preserves the high-fidelity generation ability of the pre-trained image diffusion models by making only minimal network modifications. Third, it can generate arbitrarily long videos conditioned on a variety of prompts such as text, image or their combinations, making it highly versatile and flexible. To combat the common drifting issue in AR models, we propose masked diffusion model which implicitly learns which information can be drawn from reference images rather than network predictions, in order to reduce the risk of generating inconsistent appearances that cause drifting. Moreover, we further enhance generation coherence by conditioning it on the initial frame, which typically contains minimal noise. This is particularly useful for long video generation. When trained for only two weeks on four GPUs, ART$\boldsymbol{\cdot}$V already can generate videos with natural motions, rich details and a high level of aesthetic quality. Besides, it enables various appealing applications, e.g., composing a long video from multiple text prompts.