Abstract:Recent image generation schemes typically capture image distribution in a pre-constructed latent space relying on a frozen image tokenizer. Though the performance of tokenizer plays an essential role to the successful generation, its current evaluation metrics (e.g. rFID) fail to precisely assess the tokenizer and correlate its performance to the generation quality (e.g. gFID). In this paper, we comprehensively analyze the reason for the discrepancy of reconstruction and generation qualities in a discrete latent space, and, from which, we propose a novel plug-and-play tokenizer training scheme to facilitate latent space construction. Specifically, a latent perturbation approach is proposed to simulate sampling noises, i.e., the unexpected tokens sampled, from the generative process. With the latent perturbation, we further propose (1) a novel tokenizer evaluation metric, i.e., pFID, which successfully correlates the tokenizer performance to generation quality and (2) a plug-and-play tokenizer training scheme, which significantly enhances the robustness of tokenizer thus boosting the generation quality and convergence speed. Extensive benchmarking are conducted with 11 advanced discrete image tokenizers with 2 autoregressive generation models to validate our approach. The tokenizer trained with our proposed latent perturbation achieve a notable 1.60 gFID with classifier-free guidance (CFG) and 3.45 gFID without CFG with a $\sim$400M generator. Code: https://github.com/lxa9867/ImageFolder.
Abstract:Large Language Models (LLMs) excel in reasoning but remain constrained by their Chain-of-Thought (CoT) approach, which struggles with complex tasks requiring more nuanced topological reasoning. We introduce SOLAR, Scalable Optimization of Large-scale Architecture for Reasoning, a framework that dynamically optimizes various reasoning topologies to enhance accuracy and efficiency. Our Topological Annotation Generation (TAG) system automates topological dataset creation and segmentation, improving post-training and evaluation. Additionally, we propose Topological-Scaling, a reward-driven framework that aligns training and inference scaling, equipping LLMs with adaptive, task-aware reasoning. SOLAR achieves substantial gains on MATH and GSM8K: +5% accuracy with Topological Tuning, +9% with Topological Reward, and +10.02% with Hybrid Scaling. It also reduces response length by over 5% for complex problems, lowering inference latency. To foster the reward system, we train a multi-task Topological Reward Model (M-TRM), which autonomously selects the best reasoning topology and answer in a single pass, eliminating the need for training and inference on multiple single-task TRMs (S-TRMs), thus reducing both training cost and inference latency. In addition, in terms of performance, M-TRM surpasses all S-TRMs, improving accuracy by +10% and rank correlation by +9%. To the best of our knowledge, SOLAR sets a new benchmark for scalable, high-precision LLM reasoning while introducing an automated annotation process and a dynamic reasoning topology competition mechanism.