Abstract:Combinatorial medication recommendation(CMR) is a fundamental task of healthcare, which offers opportunities for clinical physicians to provide more precise prescriptions for patients with intricate health conditions, particularly in the scenarios of long-term medical care. Previous research efforts have sought to extract meaningful information from electronic health records (EHRs) to facilitate combinatorial medication recommendations. Existing learning-based approaches further consider the chemical structures of medications, but ignore the textual medication descriptions in which the functionalities are clearly described. Furthermore, the textual knowledge derived from the EHRs of patients remains largely underutilized. To address these issues, we introduce the Natural Language-Assisted Multi-modal Medication Recommendation(NLA-MMR), a multi-modal alignment framework designed to learn knowledge from the patient view and medication view jointly. Specifically, NLA-MMR formulates CMR as an alignment problem from patient and medication modalities. In this vein, we employ pretrained language models(PLMs) to extract in-domain knowledge regarding patients and medications, serving as the foundational representation for both modalities. In the medication modality, we exploit both chemical structures and textual descriptions to create medication representations. In the patient modality, we generate the patient representations based on textual descriptions of diagnosis, procedure, and symptom. Extensive experiments conducted on three publicly accessible datasets demonstrate that NLA-MMR achieves new state-of-the-art performance, with a notable average improvement of 4.72% in Jaccard score. Our source code is publicly available on https://github.com/jtan1102/NLA-MMR_CIKM_2024.
Abstract:The recent surge in the research of diffusion models has accelerated the adoption of text-to-image models in various Artificial Intelligence Generated Content (AIGC) commercial products. While these exceptional AIGC products are gaining increasing recognition and sparking enthusiasm among consumers, the questions regarding whether, when, and how these models might unintentionally reinforce existing societal stereotypes remain largely unaddressed. Motivated by recent advancements in language agents, here we introduce a novel agent architecture tailored for stereotype detection in text-to-image models. This versatile agent architecture is capable of accommodating free-form detection tasks and can autonomously invoke various tools to facilitate the entire process, from generating corresponding instructions and images, to detecting stereotypes. We build the stereotype-relevant benchmark based on multiple open-text datasets, and apply this architecture to commercial products and popular open source text-to-image models. We find that these models often display serious stereotypes when it comes to certain prompts about personal characteristics, social cultural context and crime-related aspects. In summary, these empirical findings underscore the pervasive existence of stereotypes across social dimensions, including gender, race, and religion, which not only validate the effectiveness of our proposed approach, but also emphasize the critical necessity of addressing potential ethical risks in the burgeoning realm of AIGC. As AIGC continues its rapid expansion trajectory, with new models and plugins emerging daily in staggering numbers, the challenge lies in the timely detection and mitigation of potential biases within these models.
Abstract:Many patients with chronic diseases resort to multiple medications to relieve various symptoms, which raises concerns about the safety of multiple medication use, as severe drug-drug antagonism can lead to serious adverse effects or even death. This paper presents a Decision Support System, called DSSDDI, based on drug-drug interactions to support doctors prescribing decisions. DSSDDI contains three modules, Drug-Drug Interaction (DDI) module, Medical Decision (MD) module and Medical Support (MS) module. The DDI module learns safer and more effective drug representations from the drug-drug interactions. To capture the potential causal relationship between DDI and medication use, the MD module considers the representations of patients and drugs as context, DDI and patients' similarity as treatment, and medication use as outcome to construct counterfactual links for the representation learning. Furthermore, the MS module provides drug candidates to doctors with explanations. Experiments on the chronic data collected from the Hong Kong Chronic Disease Study Project and a public diagnostic data MIMIC-III demonstrate that DSSDDI can be a reliable reference for doctors in terms of safety and efficiency of clinical diagnosis, with significant improvements compared to baseline methods.
Abstract:Graph neural networks (GNNs) have achieved tremendous success in the task of graph classification and diverse downstream real-world applications. Despite their success, existing approaches are either limited to structure attacks or restricted to local information. This calls for a more general attack framework on graph classification, which faces significant challenges due to the complexity of generating local-node-level adversarial examples using the global-graph-level information. To address this "global-to-local" problem, we present a general framework CAMA to generate adversarial examples by manipulating graph structure and node features in a hierarchical style. Specifically, we make use of Graph Class Activation Mapping and its variant to produce node-level importance corresponding to the graph classification task. Then through a heuristic design of algorithms, we can perform both feature and structure attacks under unnoticeable perturbation budgets with the help of both node-level and subgraph-level importance. Experiments towards attacking four state-of-the-art graph classification models on six real-world benchmarks verify the flexibility and effectiveness of our framework.
Abstract:Semi-supervised node classification, as a fundamental problem in graph learning, leverages unlabeled nodes along with a small portion of labeled nodes for training. Existing methods rely heavily on high-quality labels, which, however, are expensive to obtain in real-world applications since certain noises are inevitably involved during the labeling process. It hence poses an unavoidable challenge for the learning algorithm to generalize well. In this paper, we propose a novel robust learning objective dubbed pairwise interactions (PI) for the model, such as Graph Neural Network (GNN) to combat noisy labels. Unlike classic robust training approaches that operate on the pointwise interactions between node and class label pairs, PI explicitly forces the embeddings for node pairs that hold a positive PI label to be close to each other, which can be applied to both labeled and unlabeled nodes. We design several instantiations for PI labels based on the graph structure and the node class labels, and further propose a new uncertainty-aware training technique to mitigate the negative effect of the sub-optimal PI labels. Extensive experiments on different datasets and GNN architectures demonstrate the effectiveness of PI, yielding a promising improvement over the state-of-the-art methods.
Abstract:Graph Identification (GI) has long been researched in graph learning and is essential in certain applications (e.g. social community detection). Specifically, GI requires to predict the label/score of a target graph given its collection of node features and edge connections. While this task is common, more complex cases arise in practice---we are supposed to do the inverse thing by, for example, grouping similar users in a social network given the labels of different communities. This triggers an interesting thought: can we identify nodes given the labels of the graphs they belong to? Therefore, this paper defines a novel problem dubbed Inverse Graph Identification (IGI), as opposed to GI. Upon a formal discussion of the variants of IGI, we choose a particular case study of node clustering by making use of the graph labels and node features, with an assistance of a hierarchical graph that further characterizes the connections between different graphs. To address this task, we propose Gaussian Mixture Graph Convolutional Network (GMGCN), a simple yet effective method that makes the node-level message passing process using Graph Attention Network (GAT) under the protocol of GI and then infers the category of each node via a Gaussian Mixture Layer (GML). The training of GMGCN is further boosted by a proposed consensus loss to take advantage of the structure of the hierarchical graph. Extensive experiments are conducted to test the rationality of the formulation of IGI. We verify the superiority of the proposed method compared to other baselines on several benchmarks we have built up. We will release our codes along with the benchmark data to facilitate more research attention to the IGI problem.
Abstract:Social media has been developing rapidly in public due to its nature of spreading new information, which leads to rumors being circulated. Meanwhile, detecting rumors from such massive information in social media is becoming an arduous challenge. Therefore, some deep learning methods are applied to discover rumors through the way they spread, such as Recursive Neural Network (RvNN) and so on. However, these deep learning methods only take into account the patterns of deep propagation but ignore the structures of wide dispersion in rumor detection. Actually, propagation and dispersion are two crucial characteristics of rumors. In this paper, we propose a novel bi-directional graph model, named Bi-Directional Graph Convolutional Networks (Bi-GCN), to explore both characteristics by operating on both top-down and bottom-up propagation of rumors. It leverages a GCN with a top-down directed graph of rumor spreading to learn the patterns of rumor propagation, and a GCN with an opposite directed graph of rumor diffusion to capture the structures of rumor dispersion. Moreover, the information from the source post is involved in each layer of GCN to enhance the influences from the roots of rumors. Encouraging empirical results on several benchmarks confirm the superiority of the proposed method over the state-of-the-art approaches.