Graph neural networks (GNNs) have achieved tremendous success in the task of graph classification and diverse downstream real-world applications. Despite their success, existing approaches are either limited to structure attacks or restricted to local information. This calls for a more general attack framework on graph classification, which faces significant challenges due to the complexity of generating local-node-level adversarial examples using the global-graph-level information. To address this "global-to-local" problem, we present a general framework CAMA to generate adversarial examples by manipulating graph structure and node features in a hierarchical style. Specifically, we make use of Graph Class Activation Mapping and its variant to produce node-level importance corresponding to the graph classification task. Then through a heuristic design of algorithms, we can perform both feature and structure attacks under unnoticeable perturbation budgets with the help of both node-level and subgraph-level importance. Experiments towards attacking four state-of-the-art graph classification models on six real-world benchmarks verify the flexibility and effectiveness of our framework.