Abstract:Technology research and standardization work of sixth generation (6G) has been carried out worldwide. Channel research is the prerequisite of 6G technology evaluation and optimization. This paper presents a survey and tutorial on channel measurement, modeling, and simulation for 6G. We first highlight the challenges of channel for 6G systems, including higher frequency band, extremely large antenna array, new technology combinations, and diverse application scenarios. A review of channel measurement and modeling for four possible 6G enabling technologies is then presented, i.e., terahertz communication, massive multiple-input multiple-output communication, joint communication and sensing, and reconfigurable intelligent surface. Finally, we introduce a 6G channel simulation platform and provide examples of its implementation. The goal of this paper is to help both professionals and non-professionals know the progress of 6G channel research, understand the 6G channel model, and use it for 6G simulation.
Abstract:Reconfigurable intelligent surface (RIS) is seen as a promising technology for next-generation wireless communications, and channel modeling is the key to RIS research. However, traditional model frameworks only support Tx-Rx channel modeling. In this letter, a RIS cascade channel modeling method based on a geometry-based stochastic model (GBSM) is proposed, which follows a 3GPP standardized modeling framework. The main improvements come from two aspects. One is to consider the non-ideal phase modulation of the RIS element, so as to accurately include its phase modulation characteristic. The other is the Tx-RIS-Rx cascade channel generation method based on the RIS radiation pattern. Thus, the conventional Tx-Rx channel model is easily expanded to RIS propagation environments. The differences between the proposed cascade channel model and the channel model with ideal phase modulation are investigated. The simulation results show that the proposed model can better reflect the dependence of RIS on angle and polarization.