Abstract:Predicting drug-drug interaction (DDI) plays an important role in pharmacology and healthcare for identifying potential adverse interactions and beneficial combination therapies between drug pairs. Recently, a flurry of graph learning methods have been introduced to predict drug-drug interactions. However, evaluating existing methods has several limitations, such as the absence of a unified comparison framework for DDI prediction methods, lack of assessments in meaningful real-world scenarios, and insufficient exploration of side information usage. In order to address these unresolved limitations in the literature, we propose a DDI prediction benchmark on graph learning. We first conduct unified evaluation comparison among existing methods. To meet realistic scenarios, we further evaluate the performance of different methods in settings with new drugs involved and examine the performance across different DDI types. Component analysis is conducted on the biomedical network to better utilize side information. Through this work, we hope to provide more insights for the problem of DDI prediction. Our implementation and data is open-sourced at https://anonymous.4open.science/r/DDI-Benchmark-ACD9/.
Abstract:The scaling law, a strategy that involves the brute-force scaling of the training dataset and learnable parameters, has become a prevalent approach for developing stronger learning models. In this paper, we examine its rationale in terms of learning from relational graphs. We demonstrate that directly adhering to such a scaling law does not necessarily yield stronger models due to architectural incompatibility and representation bottlenecks. To tackle this challenge, we propose a novel framework for learning from relational graphs via knowledge-aware parsimony learning. Our method draws inspiration from the duality between data and knowledge inherent in these graphs. Specifically, we first extract knowledge (like symbolic logic and physical laws) during the learning process, and then apply combinatorial generalization to the task at hand. This extracted knowledge serves as the ``building blocks'' for achieving parsimony learning. By applying this philosophy to architecture, parameters, and inference, we can effectively achieve versatile, sample-efficient, and interpretable learning. Experimental results show that our proposed framework surpasses methods that strictly follow the traditional scaling-up roadmap. This highlights the importance of incorporating knowledge in the development of next-generation learning technologies.
Abstract:Retrieval augmented generation (RAG) has been applied in many scenarios to augment large language models (LLMs) with external documents provided by retrievers. However, a semantic gap exists between LLMs and retrievers due to differences in their training objectives and architectures. This misalignment forces LLMs to passively accept the documents provided by the retrievers, leading to incomprehension in the generation process, where the LLMs are burdened with the task of distinguishing these documents using their inherent knowledge. This paper proposes R$^2$AG, a novel enhanced RAG framework to fill this gap by incorporating Retrieval information into Retrieval Augmented Generation. Specifically, R$^2$AG utilizes the nuanced features from the retrievers and employs a R$^2$-Former to capture retrieval information. Then, a retrieval-aware prompting strategy is designed to integrate retrieval information into LLMs' generation. Notably, R$^2$AG suits low-source scenarios where LLMs and retrievers are frozen. Extensive experiments across five datasets validate the effectiveness, robustness, and efficiency of R$^2$AG. Our analysis reveals that retrieval information serves as an anchor to aid LLMs in the generation process, thereby filling the semantic gap.
Abstract:The task of reasoning over Knowledge Graphs (KGs) poses a significant challenge for Large Language Models (LLMs) due to the complex structure and large amounts of irrelevant information. Existing LLM reasoning methods overlook the importance of compositional learning on KG to supply with precise knowledge. Besides, the fine-tuning and frequent interaction with LLMs incur substantial time and resource costs. This paper focuses on the Question Answering over Knowledge Graph (KGQA) task and proposes an Explore-then-Determine (EtD) framework that synergizes LLMs with graph neural networks (GNNs) for reasoning over KGs. The Explore stage employs a lightweight GNN to explore promising candidates and relevant fine-grained knowledge to the questions, while the Determine stage utilizes the explored information to construct a knowledge-enhanced multiple-choice prompt, guiding a frozen LLM to determine the final answer. Extensive experiments on three benchmark KGQA datasets demonstrate that EtD achieves state-of-the-art performance and generates faithful reasoning results.
Abstract:Medical dialogue generation (MDG) has gained increasing attention due to its substantial practical value. Previous works typically employ a sequence-to-sequence framework to generate medical responses by modeling dialogue context as sequential text with annotated medical entities. While these methods have been successful in generating fluent responses, they fail to provide process explanations of reasoning and require extensive entity annotation. To address these limitations, we propose the method Bootstrap Prompting for Explicit Reasoning in MDG (BP4ER), which explicitly model MDG's multi-step reasoning process and iteratively enhance this reasoning process. We employ a least-to-most prompting strategy to guide a large language model (LLM) in explicit reasoning, breaking down MDG into simpler sub-questions. These sub-questions build on answers from previous ones. Additionally, we also introduce two distinct bootstrapping techniques for prompting, which autonomously correct errors and facilitate the LLM's explicit reasoning. This approach eliminates the need for entity annotation and increases the transparency of the MDG process by explicitly generating the intermediate reasoning chain. The experimental findings on the two public datasets indicate that BP4ER outperforms state-of-the-art methods in terms of both objective and subjective evaluation metrics.
Abstract:Recommendation systems, as widely implemented nowadays on various platforms, recommend relevant items to users based on their preferences. The classical methods which rely on user-item interaction matrices has limitations, especially in scenarios where there is a lack of interaction data for new items. Knowledge graph (KG)-based recommendation systems have emerged as a promising solution. However, most KG-based methods adopt node embeddings, which do not provide personalized recommendations for different users and cannot generalize well to the new items. To address these limitations, we propose Knowledge-enhanced User-Centric subgraph Network (KUCNet), a subgraph learning approach with graph neural network (GNN) for effective recommendation. KUCNet constructs a U-I subgraph for each user-item pair that captures both the historical information of user-item interactions and the side information provided in KG. An attention-based GNN is designed to encode the U-I subgraphs for recommendation. Considering efficiency, the pruned user-centric computation graph is further introduced such that multiple U-I subgraphs can be simultaneously computed and that the size can be pruned by Personalized PageRank. Our proposed method achieves accurate, efficient, and interpretable recommendations especially for new items. Experimental results demonstrate the superiority of KUCNet over state-of-the-art KG-based and collaborative filtering (CF)-based methods.
Abstract:To deduce new facts on a knowledge graph (KG), a link predictor learns from the graph structure and collects local evidence to find the answer to a given query. However, existing methods suffer from a severe scalability problem due to the utilization of the whole KG for prediction, which hinders their promise on large scale KGs and cannot be directly addressed by vanilla sampling methods. In this work, we propose the one-shot-subgraph link prediction to achieve efficient and adaptive prediction. The design principle is that, instead of directly acting on the whole KG, the prediction procedure is decoupled into two steps, i.e., (i) extracting only one subgraph according to the query and (ii) predicting on this single, query dependent subgraph. We reveal that the non-parametric and computation-efficient heuristics Personalized PageRank (PPR) can effectively identify the potential answers and supporting evidence. With efficient subgraph-based prediction, we further introduce the automated searching of the optimal configurations in both data and model spaces. Empirically, we achieve promoted efficiency and leading performances on five large-scale benchmarks. The code is publicly available at: https://github.com/tmlr-group/one-shot-subgraph.
Abstract:Adverse drug-drug interactions~(DDIs) can compromise the effectiveness of concurrent drug administration, posing a significant challenge in healthcare. As the development of new drugs continues, the potential for unknown adverse effects resulting from DDIs becomes a growing concern. Traditional computational methods for DDI prediction may fail to capture interactions for new drugs due to the lack of knowledge. In this paper, we introduce a new problem setup as zero-shot DDI prediction that deals with the case of new drugs. Leveraging textual information from online databases like DrugBank and PubChem, we propose an innovative approach TextDDI with a language model-based DDI predictor and a reinforcement learning~(RL)-based information selector, enabling the selection of concise and pertinent text for accurate DDI prediction on new drugs. Empirical results show the benefits of the proposed approach on several settings including zero-shot and few-shot DDI prediction, and the selected texts are semantically relevant. Our code and data are available at \url{https://github.com/zhufq00/DDIs-Prediction}.
Abstract:Accurately predicting drug-drug interactions (DDI) for emerging drugs, which offer possibilities for treating and alleviating diseases, with computational methods can improve patient care and contribute to efficient drug development. However, many existing computational methods require large amounts of known DDI information, which is scarce for emerging drugs. In this paper, we propose EmerGNN, a graph neural network (GNN) that can effectively predict interactions for emerging drugs by leveraging the rich information in biomedical networks. EmerGNN learns pairwise representations of drugs by extracting the paths between drug pairs, propagating information from one drug to the other, and incorporating the relevant biomedical concepts on the paths. The different edges on the biomedical network are weighted to indicate the relevance for the target DDI prediction. Overall, EmerGNN has higher accuracy than existing approaches in predicting interactions for emerging drugs and can identify the most relevant information on the biomedical network.
Abstract:Node classification on graphs is an important research problem with many applications. Real-world graph data sets may not be balanced and accurate as assumed by most existing works. A challenging setting is positive-unlabeled (PU) node classification, where labeled nodes are restricted to positive nodes. It has diverse applications, e.g., pandemic prediction or network anomaly detection. Existing works on PU node classification overlook information in the graph structure, which can be critical. In this paper, we propose to better utilize graph structure for PU node classification. We first propose a distance-aware PU loss that uses homophily in graphs to introduce more accurate supervision. We also propose a regularizer to align the model with graph structure. Theoretical analysis shows that minimizing the proposed loss also leads to minimizing the expected loss with both positive and negative labels. Extensive empirical evaluation on diverse graph data sets demonstrates its superior performance over existing state-of-the-art methods.