Abstract:Transportation mode share analysis is important to various real-world transportation tasks as it helps researchers understand the travel behaviors and choices of passengers. A typical example is the prediction of communities' travel mode share by accounting for their sociodemographics like age, income, etc., and travel modes' attributes (e.g. travel cost and time). However, there exist only limited efforts in integrating the structure of the urban built environment, e.g., road networks, into the mode share models to capture the impacts of the built environment. This task usually requires manual feature engineering or prior knowledge of the urban design features. In this study, we propose deep hybrid models (DHM), which directly combine road networks and sociodemographic features as inputs for travel mode share analysis. Using graph embedding (GE) techniques, we enhance travel demand models with a more powerful representation of urban structures. In experiments of mode share prediction in Chicago, results demonstrate that DHM can provide valuable spatial insights into the sociodemographic structure, improving the performance of travel demand models in estimating different mode shares at the city level. Specifically, DHM improves the results by more than 20\% while retaining the interpretation power of the choice models, demonstrating its superiority in interpretability, prediction accuracy, and geographical insights.
Abstract:Self-supervised monocular depth estimation methods have been increasingly given much attention due to the benefit of not requiring large, labelled datasets. Such self-supervised methods require high-quality salient features and consequently suffer from severe performance drop for indoor scenes, where low-textured regions dominant in the scenes are almost indiscriminative. To address the issue, we propose a self-supervised indoor monocular depth estimation framework called $\mathrm{F^2Depth}$. A self-supervised optical flow estimation network is introduced to supervise depth learning. To improve optical flow estimation performance in low-textured areas, only some patches of points with more discriminative features are adopted for finetuning based on our well-designed patch-based photometric loss. The finetuned optical flow estimation network generates high-accuracy optical flow as a supervisory signal for depth estimation. Correspondingly, an optical flow consistency loss is designed. Multi-scale feature maps produced by finetuned optical flow estimation network perform warping to compute feature map synthesis loss as another supervisory signal for depth learning. Experimental results on the NYU Depth V2 dataset demonstrate the effectiveness of the framework and our proposed losses. To evaluate the generalization ability of our $\mathrm{F^2Depth}$, we collect a Campus Indoor depth dataset composed of approximately 1500 points selected from 99 images in 18 scenes. Zero-shot generalization experiments on 7-Scenes dataset and Campus Indoor achieve $\delta_1$ accuracy of 75.8% and 76.0% respectively. The accuracy results show that our model can generalize well to monocular images captured in unknown indoor scenes.
Abstract:Treatment for high-grade precancerous cervical lesions and early-stage cancers, mainly affecting women of reproductive age, often involves fertility-sparing treatment methods. Commonly used local treatments for cervical precancers have shown the risk of leaving a positive cancer margin and engendering subsequent complications according to the precision and depth of excision. An intra-operative device that allows the careful excision of the disease while conserving healthy cervical tissue would potentially enhance such treatment. In this study, we developed a polymer-based robotic fiber measuring 150 mm in length and 1.7 mm in diameter, fabricated using a highly scalable fiber drawing technique. This robotic fiber utilizes a hybrid actuation mechanism, combining electrothermal and tendon-driven actuation mechanisms, thus enabling a maximum motion range of 46 mm from its origin with a sub-100 {\mu}m motion precision. We also developed control algorithms for the actuation methods of this robotic fiber, including predefined path control and telemanipulation, enabling coarse positioning of the fiber tip to the target area followed by a precise scan. The combination of a surgical laser fiber with the robotic fiber allows for high-precision surgical ablation. Additionally, we conducted experiments using a cervical phantom that demonstrated the robotic fiber's ability to access and perform high-precision scans, highlighting its potential for cervical disease treatments and improvement of oncological outcomes.
Abstract:In this paper, we for the first time propose the task of Open-domain Urban Itinerary Planning (OUIP) for citywalk, which directly generates itineraries based on users' requests described in natural language. OUIP is different from conventional itinerary planning, which limits users from expressing more detailed needs and hinders true personalization. Recently, large language models (LLMs) have shown potential in handling diverse tasks. However, due to non-real-time information, incomplete knowledge, and insufficient spatial awareness, they are unable to independently deliver a satisfactory user experience in OUIP. Given this, we present ItiNera, an OUIP system that synergizes spatial optimization with Large Language Models (LLMs) to provide services that customize urban itineraries based on users' needs. Specifically, we develop an LLM-based pipeline for extracting and updating POI features to create a user-owned personalized POI database. For each user request, we leverage LLM in cooperation with an embedding-based module for retrieving candidate POIs from the user's POI database. Then, a spatial optimization module is used to order these POIs, followed by LLM crafting a personalized, spatially coherent itinerary. To the best of our knowledge, this study marks the first integration of LLMs to innovate itinerary planning solutions. Extensive experiments on offline datasets and online subjective evaluation have demonstrated the capacities of our system to deliver more responsive and spatially coherent itineraries than current LLM-based solutions. Our system has been deployed in production at the TuTu online travel service and has attracted thousands of users for their urban travel planning.
Abstract:The rapid growth of the ride-hailing industry has revolutionized urban transportation worldwide. Despite its benefits, equity concerns arise as underserved communities face limited accessibility to affordable ride-hailing services. A key issue in this context is the vehicle rebalancing problem, where idle vehicles are moved to areas with anticipated demand. Without equitable approaches in demand forecasting and rebalancing strategies, these practices can further deepen existing inequities. In the realm of ride-hailing, three main facets of fairness are recognized: algorithmic fairness, fairness to drivers, and fairness to riders. This paper focuses on enhancing both algorithmic and rider fairness through a novel vehicle rebalancing method. We introduce an approach that combines a Socio-Aware Spatial-Temporal Graph Convolutional Network (SA-STGCN) for refined demand prediction and a fairness-integrated Matching-Integrated Vehicle Rebalancing (MIVR) model for subsequent vehicle rebalancing. Our methodology is designed to reduce prediction discrepancies and ensure equitable service provision across diverse regions. The effectiveness of our system is evaluated using simulations based on real-world ride-hailing data. The results suggest that our proposed method enhances both accuracy and fairness in forecasting ride-hailing demand, ultimately resulting in more equitable vehicle rebalancing in subsequent operations. Specifically, the algorithm developed in this study effectively reduces the standard deviation and average customer wait times by 6.48% and 0.49%, respectively. This achievement signifies a beneficial outcome for ride-hailing platforms, striking a balance between operational efficiency and fairness.
Abstract:Travel behavior prediction is a fundamental task in transportation demand management. The conventional methods for travel behavior prediction rely on numerical data to construct mathematical models and calibrate model parameters to represent human preferences. Recent advancement in large language models (LLMs) has shown great reasoning abilities to solve complex problems. In this study, we propose to use LLMs to predict travel behavior with prompt engineering without data-based parameter learning. Specifically, we carefully design our prompts that include 1) task description, 2) travel characteristics, 3) individual attributes, and 4) guides of thinking with domain knowledge, and ask the LLMs to predict an individual's travel behavior and explain the results. We select the travel mode choice task as a case study. Results show that, though no training samples are provided, LLM-based predictions have competitive accuracy and F1-score as canonical supervised learning methods such as multinomial logit, random forest, and neural networks. LLMs can also output reasons that support their prediction. However, though in most of the cases, the output explanations are reasonable, we still observe cases that violate logic or with hallucinations.
Abstract:In last-mile delivery, drivers frequently deviate from planned delivery routes because of their tacit knowledge of the road and curbside infrastructure, customer availability, and other characteristics of the respective service areas. Hence, the actual stop sequences chosen by an experienced human driver may be potentially preferable to the theoretical shortest-distance routing under real-life operational conditions. Thus, being able to predict the actual stop sequence that a human driver would follow can help to improve route planning in last-mile delivery. This paper proposes a pair-wise attention-based pointer neural network for this prediction task using drivers' historical delivery trajectory data. In addition to the commonly used encoder-decoder architecture for sequence-to-sequence prediction, we propose a new attention mechanism based on an alternative specific neural network to capture the local pair-wise information for each pair of stops. To further capture the global efficiency of the route, we propose a new iterative sequence generation algorithm that is used after model training to identify the first stop of a route that yields the lowest operational cost. Results from an extensive case study on real operational data from Amazon's last-mile delivery operations in the US show that our proposed method can significantly outperform traditional optimization-based approaches and other machine learning methods (such as the Long Short-Term Memory encoder-decoder and the original pointer network) in finding stop sequences that are closer to high-quality routes executed by experienced drivers in the field. Compared to benchmark models, the proposed model can increase the average prediction accuracy of the first four stops from around 0.2 to 0.312, and reduce the disparity between the predicted route and the actual route by around 15%.