Abstract:Self-supervised monocular depth estimation methods have been increasingly given much attention due to the benefit of not requiring large, labelled datasets. Such self-supervised methods require high-quality salient features and consequently suffer from severe performance drop for indoor scenes, where low-textured regions dominant in the scenes are almost indiscriminative. To address the issue, we propose a self-supervised indoor monocular depth estimation framework called $\mathrm{F^2Depth}$. A self-supervised optical flow estimation network is introduced to supervise depth learning. To improve optical flow estimation performance in low-textured areas, only some patches of points with more discriminative features are adopted for finetuning based on our well-designed patch-based photometric loss. The finetuned optical flow estimation network generates high-accuracy optical flow as a supervisory signal for depth estimation. Correspondingly, an optical flow consistency loss is designed. Multi-scale feature maps produced by finetuned optical flow estimation network perform warping to compute feature map synthesis loss as another supervisory signal for depth learning. Experimental results on the NYU Depth V2 dataset demonstrate the effectiveness of the framework and our proposed losses. To evaluate the generalization ability of our $\mathrm{F^2Depth}$, we collect a Campus Indoor depth dataset composed of approximately 1500 points selected from 99 images in 18 scenes. Zero-shot generalization experiments on 7-Scenes dataset and Campus Indoor achieve $\delta_1$ accuracy of 75.8% and 76.0% respectively. The accuracy results show that our model can generalize well to monocular images captured in unknown indoor scenes.
Abstract:We present projective parallel single-pixel imaging (pPSI), a 3D photography method that provides a robust and efficient way to analyze the light transport behavior and enables separation of light effect due to global illumination, thereby achieving 3D structured light scanning under global illumination. The light transport behavior is described by the light transport coefficients (LTC), which contain complete information for a projector camera pair, and is a 4D data set. However, the capture of LTC is generally time consuming. The 4D LTC in pPSI are reduced to projection functions, thereby enabling a highly efficient data capture process. We introduce the local maximum constraint, which provides constraint for the location of candidate correspondence matching points when projections are captured. Local slice extension (LSE) method is introduced to accelerate the capture of projection functions. Optimization is conducted for pPSI under several situations. The number of projection functions required for pPSI is optimized and the influence of capture ratio in LSE on the accuracy of the correspondence matching points is investigated. Discussions and experiments include two typical kinds of global illuminations: inter-reflections and subsurface scattering. The proposed method is validated with several challenging scenarios, and outperforms the state-of-the-art methods.