Sean
Abstract:AI-driven software development has rapidly advanced with the emergence of software development agents that leverage large language models (LLMs) to tackle complex, repository-level software engineering tasks. These agents go beyond just generation of final code; they engage in multi-step reasoning, utilize various tools for code modification and debugging, and interact with execution environments to diagnose and iteratively resolve issues. However, most existing evaluations focus primarily on static analyses of final code outputs, yielding limited insights into the agents' dynamic problem-solving processes. To fill this gap, we conduct an in-depth empirical study on 3,977 solving-phase trajectories and 3,931 testing-phase logs from 8 top-ranked agents evaluated on 500 GitHub issues in the SWE-Bench benchmark. Our exploratory analysis shows that Python execution errors during the issue resolution phase correlate with lower resolution rates and increased reasoning overheads. We have identified the most prevalent errors -- such as ModuleNotFoundError and TypeError -- and highlighted particularly challenging errors like OSError and database-related issues (e.g., IntegrityError) that demand significantly more debugging effort. Furthermore, we have discovered 3 bugs in the SWE-Bench platform that affect benchmark fairness and accuracy; these issues have been reported to and confirmed by the maintainers. To promote transparency and foster future research, we publicly share our datasets and analysis scripts.
Abstract:Accurate trajectory prediction of road agents (e.g., pedestrians, vehicles) is an essential prerequisite for various intelligent systems applications, such as autonomous driving and robotic navigation. Recent research highlights the importance of environmental contexts (e.g., maps) and the "multi-modality" of trajectories, leading to increasingly complex model structures. However, real-world deployments require lightweight models that can quickly migrate and adapt to new environments. Additionally, the core motivations of road agents, referred to as their intentions, deserves further exploration. In this study, we advocate that understanding and reasoning road agents' intention plays a key role in trajectory prediction tasks, and the main challenge is that the concept of intention is fuzzy and abstract. To this end, we present INTENT, an efficient intention-guided trajectory prediction model that relies solely on information contained in the road agent's trajectory. Our model distinguishes itself from existing models in several key aspects: (i) We explicitly model road agents' intentions through contrastive clustering, accommodating the fuzziness and abstraction of human intention in their trajectories. (ii) The proposed INTENT is based solely on multi-layer perceptrons (MLPs), resulting in reduced training and inference time, making it very efficient and more suitable for real-world deployment. (iii) By leveraging estimated intentions and an innovative algorithm for transforming trajectory observations, we obtain more robust trajectory representations that lead to superior prediction accuracy. Extensive experiments on real-world trajectory datasets for pedestrians and autonomous vehicles demonstrate the effectiveness and efficiency of INTENT.
Abstract:Smart contracts are highly susceptible to manipulation attacks due to the leakage of sensitive information. Addressing manipulation vulnerabilities is particularly challenging because they stem from inherent data confidentiality issues rather than straightforward implementation bugs. To tackle this by preventing sensitive information leakage, we present PartitionGPT, the first LLM-driven approach that combines static analysis with the in-context learning capabilities of large language models (LLMs) to partition smart contracts into privileged and normal codebases, guided by a few annotated sensitive data variables. We evaluated PartitionGPT on 18 annotated smart contracts containing 99 sensitive functions. The results demonstrate that PartitionGPT successfully generates compilable, and verified partitions for 78% of the sensitive functions while reducing approximately 30% code compared to function-level partitioning approach. Furthermore, we evaluated PartitionGPT on nine real-world manipulation attacks that lead to a total loss of 25 million dollars, PartitionGPT effectively prevents eight cases, highlighting its potential for broad applicability and the necessity for secure program partitioning during smart contract development to diminish manipulation vulnerabilities.
Abstract:Network-wide traffic flow, which captures dynamic traffic volume on each link of a general network, is fundamental to smart mobility applications. However, the observed traffic flow from sensors is usually limited across the entire network due to the associated high installation and maintenance costs. To address this issue, existing research uses various supplementary data sources to compensate for insufficient sensor coverage and estimate the unobserved traffic flow. Although these studies have shown promising results, the inconsistent availability and quality of supplementary data across cities make their methods typically face a trade-off challenge between accuracy and generality. In this research, we first time advocate using the Global Open Multi-Source (GOMS) data within an advanced deep learning framework to break the trade-off. The GOMS data primarily encompass geographical and demographic information, including road topology, building footprints, and population density, which can be consistently collected across cities. More importantly, these GOMS data are either causes or consequences of transportation activities, thereby creating opportunities for accurate network-wide flow estimation. Furthermore, we use map images to represent GOMS data, instead of traditional tabular formats, to capture richer and more comprehensive geographical and demographic information. To address multi-source data fusion, we develop an attention-based graph neural network that effectively extracts and synthesizes information from GOMS maps while simultaneously capturing spatiotemporal traffic dynamics from observed traffic data. A large-scale case study across 15 cities in Europe and North America was conducted. The results demonstrate stable and satisfactory estimation accuracy across these cities, which suggests that the trade-off challenge can be successfully addressed using our approach.
Abstract:Urban time series, such as mobility flows, energy consumption, and pollution records, encapsulate complex urban dynamics and structures. However, data collection in each city is impeded by technical challenges such as budget limitations and sensor failures, necessitating effective data imputation techniques that can enhance data quality and reliability. Existing imputation models, categorized into learning-based and analytics-based paradigms, grapple with the trade-off between capacity and generalizability. Collaborative learning to reconstruct data across multiple cities holds the promise of breaking this trade-off. Nevertheless, urban data's inherent irregularity and heterogeneity issues exacerbate challenges of knowledge sharing and collaboration across cities. To address these limitations, we propose a novel collaborative imputation paradigm leveraging meta-learned implicit neural representations (INRs). INRs offer a continuous mapping from domain coordinates to target values, integrating the strengths of both paradigms. By imposing embedding theory, we first employ continuous parameterization to handle irregularity and reconstruct the dynamical system. We then introduce a cross-city collaborative learning scheme through model-agnostic meta learning, incorporating hierarchical modulation and normalization techniques to accommodate multiscale representations and reduce variance in response to heterogeneity. Extensive experiments on a diverse urban dataset from 20 global cities demonstrate our model's superior imputation performance and generalizability, underscoring the effectiveness of collaborative imputation in resource-constrained settings.
Abstract:Crash frequency modelling analyzes the impact of factors like traffic volume, road geometry, and environmental conditions on crash occurrences. Inaccurate predictions can distort our understanding of these factors, leading to misguided policies and wasted resources, which jeopardize traffic safety. A key challenge in crash frequency modelling is the prevalence of excessive zero observations, caused by underreporting, the low probability of crashes, and high data collection costs. These zero observations often reduce model accuracy and introduce bias, complicating safety decision making. While existing approaches, such as statistical methods, data aggregation, and resampling, attempt to address this issue, they either rely on restrictive assumptions or result in significant information loss, distorting crash data. To overcome these limitations, we propose a hybrid VAE-Diffusion neural network, designed to reduce zero observations and handle the complexities of multi-type tabular crash data (count, ordinal, nominal, and real-valued variables). We assess the synthetic data quality generated by this model through metrics like similarity, accuracy, diversity, and structural consistency, and compare its predictive performance against traditional statistical models. Our findings demonstrate that the hybrid VAE-Diffusion model outperforms baseline models across all metrics, offering a more effective approach to augmenting crash data and improving the accuracy of crash frequency predictions. This study highlights the potential of synthetic data to enhance traffic safety by improving crash frequency modelling and informing better policy decisions.
Abstract:Active reconfigurable intelligent surface (A-RIS) aided integrated sensing and communications (ISAC) system has been considered as a promising paradigm to improve spectrum efficiency. However, massive energy-hungry radio frequency (RF) chains hinder its large-scale deployment. To address this issue, an A-RIS-aided ISAC system with antenna selection (AS) is proposed in this work, where a target is sensed while multiple communication users are served with specifically selected antennas. Specifically, a cuckoo search-based scheme is first utilized to select the antennas associated with high-gain channels. Subsequently, with the properly selected antennas, the weighted sum-rate (WSR) of the system is optimized under the condition of radar probing power level, power budget for the A-RIS and transmitter. To solve the highly non-convex optimization problem, we develop an efficient algorithm based on weighted minimum mean square error (WMMSE) and fractional programming (FP). Simulation results show that the proposed AS scheme and the algorithm are effective, which reduce the number of RF chains without significant performance degradation.
Abstract:Ubiquitous mobile devices have catalyzed the development of vehicle crowd sensing (VCS). In particular, vehicle sensing systems show great potential in the flexible acquisition of spatio-temporal urban data through built-in sensors under diverse sensing scenarios. However, vehicle systems often exhibit biased coverage due to the heterogeneous nature of trip requests and routes. To achieve a high sensing coverage, a critical challenge lies in optimally relocating vehicles to minimize the divergence between vehicle distributions and target sensing distributions. Conventional approaches typically employ a two-stage predict-then-optimize (PTO) process: first predicting real-time vehicle distributions and subsequently generating an optimal relocation strategy based on the predictions. However, this approach can lead to suboptimal decision-making due to the propagation of errors from upstream prediction. To this end, we develop an end-to-end Smart Predict-then-Optimize (SPO) framework by integrating optimization into prediction within the deep learning architecture, and the entire framework is trained by minimizing the task-specific matching divergence rather than the upstream prediction error. Methodologically, we formulate the vehicle relocation problem by quadratic programming (QP) and incorporate a novel unrolling approach based on the Alternating Direction Method of Multipliers (ADMM) within the SPO framework to compute gradients of the QP layer, facilitating backpropagation and gradient-based optimization for end-to-end learning. The effectiveness of the proposed framework is validated by real-world taxi datasets in Hong Kong. Utilizing the alternating differentiation method, the general SPO framework presents a novel concept of addressing decision-making problems with uncertainty, demonstrating significant potential for advancing applications in intelligent transportation systems.
Abstract:Analogical reasoning, particularly in multimodal contexts, is the foundation of human perception and creativity. Multimodal Large Language Model (MLLM) has recently sparked considerable discussion due to its emergent capabilities. In this paper, we delve into the multimodal analogical reasoning capability of MLLM. Specifically, we explore two facets: \textit{MLLM as an explainer} and \textit{MLLM as a predictor}. In \textit{MLLM as an explainer}, we primarily focus on whether MLLM can deeply comprehend multimodal analogical reasoning problems. We propose a unified prompt template and a method for harnessing the comprehension capabilities of MLLM to augment existing models. In \textit{MLLM as a predictor}, we aim to determine whether MLLM can directly solve multimodal analogical reasoning problems. The experiments show that our approach outperforms existing methods on popular datasets, providing preliminary evidence for the analogical reasoning capability of MLLM.
Abstract:Self-supervised learning (SSL) has rapidly advanced in recent years, approaching the performance of its supervised counterparts through the extraction of representations from unlabeled data. However, dimensional collapse, where a few large eigenvalues dominate the eigenspace, poses a significant obstacle for SSL. When dimensional collapse occurs on features (e.g. hidden features and representations), it prevents features from representing the full information of the data; when dimensional collapse occurs on weight matrices, their filters are self-related and redundant, limiting their expressive power. Existing studies have predominantly concentrated on the dimensional collapse of representations, neglecting whether this can sufficiently prevent the dimensional collapse of the weight matrices and hidden features. To this end, we first time propose a mitigation approach employing orthogonal regularization (OR) across the encoder, targeting both convolutional and linear layers during pretraining. OR promotes orthogonality within weight matrices, thus safeguarding against the dimensional collapse of weight matrices, hidden features, and representations. Our empirical investigations demonstrate that OR significantly enhances the performance of SSL methods across diverse benchmarks, yielding consistent gains with both CNNs and Transformer-based architectures.