Sean
Abstract:Ubiquitous mobile devices have catalyzed the development of vehicle crowd sensing (VCS). In particular, vehicle sensing systems show great potential in the flexible acquisition of spatio-temporal urban data through built-in sensors under diverse sensing scenarios. However, vehicle systems often exhibit biased coverage due to the heterogeneous nature of trip requests and routes. To achieve a high sensing coverage, a critical challenge lies in optimally relocating vehicles to minimize the divergence between vehicle distributions and target sensing distributions. Conventional approaches typically employ a two-stage predict-then-optimize (PTO) process: first predicting real-time vehicle distributions and subsequently generating an optimal relocation strategy based on the predictions. However, this approach can lead to suboptimal decision-making due to the propagation of errors from upstream prediction. To this end, we develop an end-to-end Smart Predict-then-Optimize (SPO) framework by integrating optimization into prediction within the deep learning architecture, and the entire framework is trained by minimizing the task-specific matching divergence rather than the upstream prediction error. Methodologically, we formulate the vehicle relocation problem by quadratic programming (QP) and incorporate a novel unrolling approach based on the Alternating Direction Method of Multipliers (ADMM) within the SPO framework to compute gradients of the QP layer, facilitating backpropagation and gradient-based optimization for end-to-end learning. The effectiveness of the proposed framework is validated by real-world taxi datasets in Hong Kong. Utilizing the alternating differentiation method, the general SPO framework presents a novel concept of addressing decision-making problems with uncertainty, demonstrating significant potential for advancing applications in intelligent transportation systems.
Abstract:Analogical reasoning, particularly in multimodal contexts, is the foundation of human perception and creativity. Multimodal Large Language Model (MLLM) has recently sparked considerable discussion due to its emergent capabilities. In this paper, we delve into the multimodal analogical reasoning capability of MLLM. Specifically, we explore two facets: \textit{MLLM as an explainer} and \textit{MLLM as a predictor}. In \textit{MLLM as an explainer}, we primarily focus on whether MLLM can deeply comprehend multimodal analogical reasoning problems. We propose a unified prompt template and a method for harnessing the comprehension capabilities of MLLM to augment existing models. In \textit{MLLM as a predictor}, we aim to determine whether MLLM can directly solve multimodal analogical reasoning problems. The experiments show that our approach outperforms existing methods on popular datasets, providing preliminary evidence for the analogical reasoning capability of MLLM.
Abstract:Multi-View Representation Learning (MVRL) aims to learn a unified representation of an object from multi-view data. Deep Canonical Correlation Analysis (DCCA) and its variants share simple formulations and demonstrate state-of-the-art performance. However, with extensive experiments, we observe the issue of model collapse, {\em i.e.}, the performance of DCCA-based methods will drop drastically when training proceeds. The model collapse issue could significantly hinder the wide adoption of DCCA-based methods because it is challenging to decide when to early stop. To this end, we develop NR-DCCA, which is equipped with a novel noise regularization approach to prevent model collapse. Theoretical analysis shows that the Correlation Invariant Property is the key to preventing model collapse, and our noise regularization forces the neural network to possess such a property. A framework to construct synthetic data with different common and complementary information is also developed to compare MVRL methods comprehensively. The developed NR-DCCA outperforms baselines stably and consistently in both synthetic and real-world datasets, and the proposed noise regularization approach can also be generalized to other DCCA-based methods such as DGCCA.
Abstract:Self-supervised learning (SSL) has rapidly advanced in recent years, approaching the performance of its supervised counterparts through the extraction of representations from unlabeled data. However, dimensional collapse, where a few large eigenvalues dominate the eigenspace, poses a significant obstacle for SSL. When dimensional collapse occurs on features (e.g. hidden features and representations), it prevents features from representing the full information of the data; when dimensional collapse occurs on weight matrices, their filters are self-related and redundant, limiting their expressive power. Existing studies have predominantly concentrated on the dimensional collapse of representations, neglecting whether this can sufficiently prevent the dimensional collapse of the weight matrices and hidden features. To this end, we first time propose a mitigation approach employing orthogonal regularization (OR) across the encoder, targeting both convolutional and linear layers during pretraining. OR promotes orthogonality within weight matrices, thus safeguarding against the dimensional collapse of weight matrices, hidden features, and representations. Our empirical investigations demonstrate that OR significantly enhances the performance of SSL methods across diverse benchmarks, yielding consistent gains with both CNNs and Transformer-based architectures.
Abstract:Vision language models (VLMs) have demonstrated impressive performance across a wide range of downstream tasks. However, their proficiency in spatial reasoning remains limited, despite its crucial role in tasks involving navigation and interaction with physical environments. Specifically, much of the spatial reasoning in these tasks occurs in two-dimensional (2D) environments, and our evaluation reveals that state-of-the-art VLMs frequently generate implausible and incorrect responses to composite spatial reasoning problems, including simple pathfinding tasks that humans can solve effortlessly at a glance. To address this, we explore an effective approach to enhance 2D spatial reasoning within VLMs by training the model on basic spatial capabilities. We begin by disentangling the key components of 2D spatial reasoning: direction comprehension, distance estimation, and localization. Our central hypothesis is that mastering these basic spatial capabilities can significantly enhance a model's performance on composite spatial tasks requiring advanced spatial understanding and combinatorial problem-solving. To investigate this hypothesis, we introduce Sparkle, a framework that fine-tunes VLMs on these three basic spatial capabilities by synthetic data generation and targeted supervision to form an instruction dataset for each capability. Our experiments demonstrate that VLMs fine-tuned with Sparkle achieve significant performance gains, not only in the basic tasks themselves but also in generalizing to composite and out-of-distribution spatial reasoning tasks (e.g., improving from 13.5% to 40.0% on the shortest path problem). These findings underscore the effectiveness of mastering basic spatial capabilities in enhancing composite spatial problem-solving, offering insights for improving VLMs' spatial reasoning capabilities.
Abstract:Bus holding control is a widely-adopted strategy for maintaining stability and improving the operational efficiency of bus systems. Traditional model-based methods often face challenges with the low accuracy of bus state prediction and passenger demand estimation. In contrast, Reinforcement Learning (RL), as a data-driven approach, has demonstrated great potential in formulating bus holding strategies. RL determines the optimal control strategies in order to maximize the cumulative reward, which reflects the overall control goals. However, translating sparse and delayed control goals in real-world tasks into dense and real-time rewards for RL is challenging, normally requiring extensive manual trial-and-error. In view of this, this study introduces an automatic reward generation paradigm by leveraging the in-context learning and reasoning capabilities of Large Language Models (LLMs). This new paradigm, termed the LLM-enhanced RL, comprises several LLM-based modules: reward initializer, reward modifier, performance analyzer, and reward refiner. These modules cooperate to initialize and iteratively improve the reward function according to the feedback from training and test results for the specified RL-based task. Ineffective reward functions generated by the LLM are filtered out to ensure the stable evolution of the RL agents' performance over iterations. To evaluate the feasibility of the proposed LLM-enhanced RL paradigm, it is applied to various bus holding control scenarios, including a synthetic single-line system and a real-world multi-line system. The results demonstrate the superiority and robustness of the proposed paradigm compared to vanilla RL strategies, the LLM-based controller, and conventional space headway-based feedback control. This study sheds light on the great potential of utilizing LLMs in various smart mobility applications.
Abstract:In recent years, Large Language Models (LLMs) have gained widespread use, accompanied by increasing concerns over their security. Traditional jailbreak attacks rely on internal model details or have limitations when exploring the unsafe behavior of the victim model, limiting their generalizability. In this paper, we introduce PathSeeker, a novel black-box jailbreak method inspired by the concept of escaping a security maze. This work is inspired by the game of rats escaping a maze. We think that each LLM has its unique "security maze", and attackers attempt to find the exit learning from the received feedback and their accumulated experience to compromise the target LLM's security defences. Our approach leverages multi-agent reinforcement learning, where smaller models collaborate to guide the main LLM in performing mutation operations to achieve the attack objectives. By progressively modifying inputs based on the model's feedback, our system induces richer, harmful responses. During our manual attempts to perform jailbreak attacks, we found that the vocabulary of the response of the target model gradually became richer and eventually produced harmful responses. Based on the observation, we also introduce a reward mechanism that exploits the expansion of vocabulary richness in LLM responses to weaken security constraints. Our method outperforms five state-of-the-art attack techniques when tested across 13 commercial and open-source LLMs, achieving high attack success rates, especially in strongly aligned commercial models like GPT-4o-mini, Claude-3.5, and GLM-4-air with strong safety alignment. This study aims to improve the understanding of LLM security vulnerabilities and we hope that this sturdy can contribute to the development of more robust defenses.
Abstract:The proliferation of e-commerce and urbanization has significantly intensified delivery operations in urban areas, boosting the volume and complexity of delivery demand. Data-driven predictive methods, especially those utilizing machine learning techniques, have emerged to handle these complexities in urban delivery demand management problems. One particularly pressing problem that has not yet been sufficiently studied is the joint estimation and prediction of city-wide delivery demand. To this end, we formulate this problem as a graph-based spatiotemporal learning task. First, a message-passing neural network model is formalized to capture the interaction between demand patterns of associated regions. Second, by exploiting recent advances in large language models, we extract general geospatial knowledge encodings from the unstructured locational data and integrate them into the demand predictor. Last, to encourage the cross-city transferability of the model, an inductive training scheme is developed in an end-to-end routine. Extensive empirical results on two real-world delivery datasets, including eight cities in China and the US, demonstrate that our model significantly outperforms state-of-the-art baselines in these challenging tasks.
Abstract:In the geospatial domain, universal representation models are significantly less prevalent than their extensive use in natural language processing and computer vision. This discrepancy arises primarily from the high costs associated with the input of existing representation models, which often require street views and mobility data. To address this, we develop a novel, training-free method that leverages large language models (LLMs) and auxiliary map data from OpenStreetMap to derive geolocation representations (LLMGeovec). LLMGeovec can represent the geographic semantics of city, country, and global scales, which acts as a generic enhancer for spatio-temporal learning. Specifically, by direct feature concatenation, we introduce a simple yet effective paradigm for enhancing multiple spatio-temporal tasks including geographic prediction (GP), long-term time series forecasting (LTSF), and graph-based spatio-temporal forecasting (GSTF). LLMGeovec can seamlessly integrate into a wide spectrum of spatio-temporal learning models, providing immediate enhancements. Experimental results demonstrate that LLMGeovec achieves global coverage and significantly boosts the performance of leading GP, LTSF, and GSTF models.
Abstract:The balance between model capacity and generalization has been a key focus of recent discussions in long-term time series forecasting. Two representative channel strategies are closely associated with model expressivity and robustness, including channel independence (CI) and channel dependence (CD). The former adopts individual channel treatment and has been shown to be more robust to distribution shifts, but lacks sufficient capacity to model meaningful channel interactions. The latter is more expressive for representing complex cross-channel dependencies, but is prone to overfitting. To balance the two strategies, we present a channel-aware low-rank adaptation method to condition CD models on identity-aware individual components. As a plug-in solution, it is adaptable for a wide range of backbone architectures. Extensive experiments show that it can consistently and significantly improve the performance of both CI and CD models with demonstrated efficiency and flexibility. The code is available at https://github.com/tongnie/C-LoRA.