Abstract:Diffusion Transformers (DiT) have achieved milestones in synthesizing financial time-series data, such as stock prices and order flows. However, their performance in synthesizing treasury futures data is still underexplored. This work emphasizes the characteristics of treasury futures data, including its low volume, market dependencies, and the grouped correlations among multivariables. To overcome these challenges, we propose TF-CoDiT, the first DiT framework for language-controlled treasury futures synthesis. To facilitate low-data learning, TF-CoDiT adapts the standard DiT by transforming multi-channel 1-D time series into Discrete Wavelet Transform (DWT) coefficient matrices. A U-shape VAE is proposed to encode cross-channel dependencies hierarchically into a latent variable and bridge the latent and DWT spaces through decoding, thereby enabling latent diffusion generation. To derive prompts that cover essential conditions, we introduce the Financial Market Attribute Protocol (FinMAP) - a multi-level description system that standardizes daily$/$periodical market dynamics by recognizing 17$/$23 economic indicators from 7/8 perspectives. In our experiments, we gather four types of treasury futures data covering the period from 2015 to 2025, and define data synthesis tasks with durations ranging from one week to four months. Extensive evaluations demonstrate that TF-CoDiT can produce highly authentic data with errors at most 0.433 (MSE) and 0.453 (MAE) to the ground-truth. Further studies evidence the robustness of TF-CoDiT across contracts and temporal horizons.




Abstract:The modernization of smart farming is a way to improve agricultural production efficiency, and improve the agricultural production environment. Although many large models have achieved high accuracy in the task of object recognition and segmentation, they cannot really be put into use in the farming industry due to their own poor interpretability and limitations in computational volume. In this paper, we built AnYue Shelduck Dateset, which contains a total of 1951 Shelduck datasets, and performed target detection and segmentation annotation with the help of professional annotators. Based on AnYue ShelduckDateset, this paper describes DuckProcessing, an efficient and powerful module for duck identification based on real shelduckfarms. First of all, using the YOLOv8 module designed to divide the mahjong between them, Precision reached 98.10%, Recall reached 96.53% and F1 score reached 0.95 on the test set. Again using the DuckSegmentation segmentation model, DuckSegmentation reached 96.43% mIoU. Finally, the excellent DuckSegmentation was used as the teacher model, and through knowledge distillation, Deeplabv3 r50 was used as the student model, and the final student model achieved 94.49% mIoU on the test set. The method provides a new way of thinking in practical sisal duck smart farming.