Abstract:Active reconfigurable intelligent surface (A-RIS) aided integrated sensing and communications (ISAC) system has been considered as a promising paradigm to improve spectrum efficiency. However, massive energy-hungry radio frequency (RF) chains hinder its large-scale deployment. To address this issue, an A-RIS-aided ISAC system with antenna selection (AS) is proposed in this work, where a target is sensed while multiple communication users are served with specifically selected antennas. Specifically, a cuckoo search-based scheme is first utilized to select the antennas associated with high-gain channels. Subsequently, with the properly selected antennas, the weighted sum-rate (WSR) of the system is optimized under the condition of radar probing power level, power budget for the A-RIS and transmitter. To solve the highly non-convex optimization problem, we develop an efficient algorithm based on weighted minimum mean square error (WMMSE) and fractional programming (FP). Simulation results show that the proposed AS scheme and the algorithm are effective, which reduce the number of RF chains without significant performance degradation.
Abstract:It is critical to design efficient beamforming in reconfigurable intelligent surface (RIS)-aided integrated sensing and communication (ISAC) systems for enhancing spectrum utilization. However, conventional methods often have limitations, either incurring high computational complexity due to iterative algorithms or sacrificing performance when using heuristic methods. To achieve both low complexity and high spectrum efficiency, an unsupervised learning-based beamforming design is proposed in this work. We tailor image-shaped channel samples and develop an ISAC beamforming neural network (IBF-Net) model for beamforming. By leveraging unsupervised learning, the loss function incorporates key performance metrics like sensing and communication channel correlation and sensing channel gain, eliminating the need of labeling. Simulations show that the proposed method achieves competitive performance compared to benchmarks while significantly reduces computational complexity.
Abstract:Energy efficiency (EE) is a challenging task in integrated sensing and communication (ISAC) systems, where high spectral efficiency and low energy consumption appear as conflicting requirements. Although passive reconfigurable intelligent surface (RIS) has emerged as a promising technology for enhancing the EE of the ISAC system, the multiplicative fading feature hinders its effectiveness. This paper proposes the use of active RIS with its amplification gains to assist the ISAC system for EE improvement. Specifically, we formulate an EE optimization problem in an active RIS-aided ISAC system under system power budgets, considering constraints on user communication quality of service and sensing signal-to-noise ratio (SNR). A novel alternating optimization algorithm is developed to address the highly non-convex problem by leveraging a combination of the generalized Rayleigh quotient optimization approach, semidefinite relaxation (SDR), and the majorization-minimization (MM) framework. Furthermore, to accelerate the algorithm and reduce computational complexity, we derive a semi-closed form for eigenvalue determination. Numerical results demonstrate the effectiveness of the proposed approach, showcasing significant improvements in EE compared to both passive RIS and spectrum efficiency optimization cases.