Abstract:Shared control can help in teleoperated object manipulation by assisting with the execution of the user's intention. To this end, robust and prompt intention estimation is needed, which relies on behavioral observations. Here, an intention estimation framework is presented, which uses natural gaze and motion features to predict the current action and the target object. The system is trained and tested in a simulated environment with pick and place sequences produced in a relatively cluttered scene and with both hands, with possible hand-over to the other hand. Validation is conducted across different users and hands, achieving good accuracy and earliness of prediction. An analysis of the predictive power of single features shows the predominance of the grasping trigger and the gaze features in the early identification of the current action. In the current framework, the same probabilistic model can be used for the two hands working in parallel and independently, while a rule-based model is proposed to identify the resulting bimanual action. Finally, limitations and perspectives of this approach to more complex, full-bimanual manipulations are discussed.
Abstract:We describe a framework for changing-contact robot manipulation tasks that require the robot to make and break contacts with objects and surfaces. The discontinuous interaction dynamics of such tasks make it difficult to construct and use a single dynamics model or control strategy, and the highly non-linear nature of the dynamics during contact changes can be damaging to the robot and the objects. We present an adaptive control framework that enables the robot to incrementally learn to predict contact changes in a changing contact task, learn the interaction dynamics of the piece-wise continuous system, and provide smooth and accurate trajectory tracking using a task-space variable impedance controller. We experimentally compare the performance of our framework against that of representative control methods to establish that the adaptive control and incremental learning components of our framework are needed to achieve smooth control in the presence of discontinuous dynamics in changing-contact robot manipulation tasks.
Abstract:Many robot manipulation tasks require the robot to make and break contact with objects and surfaces. The dynamics of such changing-contact robot manipulation tasks are discontinuous when contact is made or broken, and continuous elsewhere. These discontinuities make it difficult to construct and use a single dynamics model or control strategy for any such task. We present a framework for smooth dynamics and control of such changing-contact manipulation tasks. For any given target motion trajectory, the framework incrementally improves its prediction of when contacts will occur. This prediction and a model relating approach velocity to impact force modify the velocity profile of the motion sequence such that it is $C^\infty$ smooth, and help achieve a desired force on impact. We implement this framework by building on our hybrid force-motion variable impedance controller for continuous contact tasks. We experimentally evaluate our framework in the illustrative context of sliding tasks involving multiple contact changes with transitions between surfaces of different properties.