Abstract:The rapid advancement of perovskite solar cells (PSCs) has led to an exponential growth in research publications, creating an urgent need for efficient knowledge management and reasoning systems in this domain. We present a comprehensive knowledge-enhanced system for PSCs that integrates three key components. First, we develop Perovskite-KG, a domain-specific knowledge graph constructed from 1,517 research papers, containing 23,789 entities and 22,272 relationships. Second, we create two complementary datasets: Perovskite-Chat, comprising 55,101 high-quality question-answer pairs generated through a novel multi-agent framework, and Perovskite-Reasoning, containing 2,217 carefully curated materials science problems. Third, we introduce two specialized large language models: Perovskite-Chat-LLM for domain-specific knowledge assistance and Perovskite-Reasoning-LLM for scientific reasoning tasks. Experimental results demonstrate that our system significantly outperforms existing models in both domain-specific knowledge retrieval and scientific reasoning tasks, providing researchers with effective tools for literature review, experimental design, and complex problem-solving in PSC research.
Abstract:Uplift modeling is a fundamental component of marketing effect modeling, which is commonly employed to evaluate the effects of treatments on outcomes. Through uplift modeling, we can identify the treatment with the greatest benefit. On the other side, we can identify clients who are likely to make favorable decisions in response to a certain treatment. In the past, uplift modeling approaches relied heavily on the difference-in-difference (DID) architecture, paired with a machine learning model as the estimation learner, while neglecting the link and confidential information between features. We proposed a framework based on graph neural networks that combine causal knowledge with an estimate of uplift value. Firstly, we presented a causal representation technique based on CATE (conditional average treatment effect) estimation and adjacency matrix structure learning. Secondly, we suggested a more scalable uplift modeling framework based on graph convolution networks for combining causal knowledge. Our findings demonstrate that this method works effectively for predicting uplift values, with small errors in typical simulated data, and its effectiveness has been verified in actual industry marketing data.