Abstract:Deep models have recently emerged as a promising tool to solve partial differential equations (PDEs), known as neural PDE solvers. While neural solvers trained from either simulation data or physics-informed loss can solve the PDEs reasonably well, they are mainly restricted to a specific set of PDEs, e.g. a certain equation or a finite set of coefficients. This bottleneck limits the generalizability of neural solvers, which is widely recognized as its major advantage over numerical solvers. In this paper, we present the Universal PDE solver (Unisolver) capable of solving a wide scope of PDEs by leveraging a Transformer pre-trained on diverse data and conditioned on diverse PDEs. Instead of simply scaling up data and parameters, Unisolver stems from the theoretical analysis of the PDE-solving process. Our key finding is that a PDE solution is fundamentally under the control of a series of PDE components, e.g. equation symbols, coefficients, and initial and boundary conditions. Inspired by the mathematical structure of PDEs, we define a complete set of PDE components and correspondingly embed them as domain-wise (e.g. equation symbols) and point-wise (e.g. boundaries) conditions for Transformer PDE solvers. Integrating physical insights with recent Transformer advances, Unisolver achieves consistent state-of-the-art results on three challenging large-scale benchmarks, showing impressive gains and endowing favorable generalizability and scalability.
Abstract:Recent advancements in Large Language Models (LLMs) and Large Multi-modal Models (LMMs) have shown potential in various medical applications, such as Intelligent Medical Diagnosis. Although impressive results have been achieved, we find that existing benchmarks do not reflect the complexity of real medical reports and specialized in-depth reasoning capabilities. In this work, we introduced RJUA-MedDQA, a comprehensive benchmark in the field of medical specialization, which poses several challenges: comprehensively interpreting imgage content across diverse challenging layouts, possessing numerical reasoning ability to identify abnormal indicators and demonstrating clinical reasoning ability to provide statements of disease diagnosis, status and advice based on medical contexts. We carefully design the data generation pipeline and proposed the Efficient Structural Restoration Annotation (ESRA) Method, aimed at restoring textual and tabular content in medical report images. This method substantially enhances annotation efficiency, doubling the productivity of each annotator, and yields a 26.8% improvement in accuracy. We conduct extensive evaluations, including few-shot assessments of 5 LMMs which are capable of solving Chinese medical QA tasks. To further investigate the limitations and potential of current LMMs, we conduct comparative experiments on a set of strong LLMs by using image-text generated by ESRA method. We report the performance of baselines and offer several observations: (1) The overall performance of existing LMMs is still limited; however LMMs more robust to low-quality and diverse-structured images compared to LLMs. (3) Reasoning across context and image content present significant challenges. We hope this benchmark helps the community make progress on these challenging tasks in multi-modal medical document understanding and facilitate its application in healthcare.
Abstract:Transformers have empowered many milestones across various fields and have recently been applied to solve partial differential equations (PDEs). However, since PDEs are typically discretized into large-scale meshes with complex geometries, it is challenging for Transformers to capture intricate physical correlations directly from massive individual points. Going beyond superficial and unwieldy meshes, we present Transolver based on a more foundational idea, which is learning intrinsic physical states hidden behind discretized geometries. Specifically, we propose a new Physics-Attention to adaptively split the discretized domain into a series of learnable slices of flexible shapes, where mesh points under similar physical states will be ascribed to the same slice. By calculating attention to physics-aware tokens encoded from slices, Transovler can effectively capture intricate physical correlations under complex geometrics, which also empowers the solver with endogenetic geometry-general modeling capacity and can be efficiently computed in linear complexity. Transolver achieves consistent state-of-the-art with 22\% relative gain across six standard benchmarks and also excels in large-scale industrial simulations, including car and airfoil designs.
Abstract:We advance the field of Parameter-Efficient Fine-Tuning (PEFT) with our novel multi-adapter method, OrchMoE, which capitalizes on modular skill architecture for enhanced forward transfer in neural networks. Unlike prior models that depend on explicit task identification inputs, OrchMoE automatically discerns task categories, streamlining the learning process. This is achieved through an integrated mechanism comprising an Automatic Task Classification module and a Task-Skill Allocation module, which collectively deduce task-specific classifications and tailor skill allocation matrices. Our extensive evaluations on the 'Super Natural Instructions' dataset, featuring 1,600 diverse instructional tasks, indicate that OrchMoE substantially outperforms comparable multi-adapter baselines in terms of both performance and sample utilization efficiency, all while operating within the same parameter constraints. These findings suggest that OrchMoE offers a significant leap forward in multi-task learning efficiency.
Abstract:Reconstructing real-world objects and estimating their movable joint structures are pivotal technologies within the field of robotics. Previous research has predominantly focused on supervised approaches, relying on extensively annotated datasets to model articulated objects within limited categories. However, this approach falls short of effectively addressing the diversity present in the real world. To tackle this issue, we propose a self-supervised interaction perception method, referred to as SM$^3$, which leverages multi-view RGB images captured before and after interaction to model articulated objects, identify the movable parts, and infer the parameters of their rotating joints. By constructing 3D geometries and textures from the captured 2D images, SM$^3$ achieves integrated optimization of movable part and joint parameters during the reconstruction process, obviating the need for annotations. Furthermore, we introduce the MMArt dataset, an extension of PartNet-Mobility, encompassing multi-view and multi-modal data of articulated objects spanning diverse categories. Evaluations demonstrate that SM$^3$ surpasses existing benchmarks across various categories and objects, while its adaptability in real-world scenarios has been thoroughly validated.
Abstract:Predicting click-through rate (CTR) is the core task of many ads online recommendation systems, which helps improve user experience and increase platform revenue. In this type of recommendation system, we often encounter two main problems: the joint usage of multi-page historical advertising data and the cold start of new ads. In this paper, we proposed GACE, a graph-based cross-page ads embedding generation method. It can warm up and generate the representation embedding of cold-start and existing ads across various pages. Specifically, we carefully build linkages and a weighted undirected graph model considering semantic and page-type attributes to guide the direction of feature fusion and generation. We designed a variational auto-encoding task as pre-training module and generated embedding representations for new and old ads based on this task. The results evaluated in the public dataset AliEC from RecBole and the real-world industry dataset from Alipay show that our GACE method is significantly superior to the SOTA method. In the online A/B test, the click-through rate on three real-world pages from Alipay has increased by 3.6%, 2.13%, and 3.02%, respectively. Especially in the cold-start task, the CTR increased by 9.96%, 7.51%, and 8.97%, respectively.
Abstract:Existing work has revealed that large-scale offline evaluation of recommender systems for user-item interactions is prone to bias caused by the deployed system itself, as a form of closed loop feedback. Many adopt the \textit{propensity} concept to analyze or mitigate this empirical issue. In this work, we extend the analysis to session-based setup and adapted propensity calculation to the unique characteristics of session-based recommendation tasks. Our experiments incorporate neural models and KNN-based models, and cover both the music and the e-commerce domain. We study the distributions of propensity and different stratification techniques on different datasets and find that propensity-related traits are actually dataset-specific. We then leverage the effect of stratification and achieve promising results compared to the original models.
Abstract:With the strong robusticity on illumination variations, near-infrared (NIR) can be an effective and essential complement to visible (VIS) facial expression recognition in low lighting or complete darkness conditions. However, facial expression recognition (FER) from NIR images presents more challenging problem than traditional FER due to the limitations imposed by the data scale and the difficulty of extracting discriminative features from incomplete visible lighting contents. In this paper, we give the first attempt to deep NIR facial expression recognition and proposed a novel method called near-infrared facial expression transformer (NFER-Former). Specifically, to make full use of the abundant label information in the field of VIS, we introduce a Self-Attention Orthogonal Decomposition mechanism that disentangles the expression information and spectrum information from the input image, so that the expression features can be extracted without the interference of spectrum variation. We also propose a Hypergraph-Guided Feature Embedding method that models some key facial behaviors and learns the structure of the complex correlations between them, thereby alleviating the interference of inter-class similarity. Additionally, we have constructed a large NIR-VIS Facial Expression dataset that includes 360 subjects to better validate the efficiency of NFER-Former. Extensive experiments and ablation studies show that NFER-Former significantly improves the performance of NIR FER and achieves state-of-the-art results on the only two available NIR FER datasets, Oulu-CASIA and Large-HFE.
Abstract:6-DoF object-agnostic grasping in unstructured environments is a critical yet challenging task in robotics. Most current works use non-optimized approaches to sample grasp locations and learn spatial features without concerning the grasping task. This paper proposes GraNet, a graph-based grasp pose generation framework that translates a point cloud scene into multi-level graphs and propagates features through graph neural networks. By building graphs at the scene level, object level, and grasp point level, GraNet enhances feature embedding at multiple scales while progressively converging to the ideal grasping locations by learning. Our pipeline can thus characterize the spatial distribution of grasps in cluttered scenes, leading to a higher rate of effective grasping. Furthermore, we enhance the representation ability of scalable graph networks by a structure-aware attention mechanism to exploit local relations in graphs. Our method achieves state-of-the-art performance on the large-scale GraspNet-1Billion benchmark, especially in grasping unseen objects (+11.62 AP). The real robot experiment shows a high success rate in grasping scattered objects, verifying the effectiveness of the proposed approach in unstructured environments.
Abstract:Modular and composable transfer learning is an emerging direction in the field of Parameter Efficient Fine-Tuning, as it enables neural networks to better organize various aspects of knowledge, leading to improved cross-task generalization. In this paper, we introduce a novel approach Customized Polytropon C-Poly that combines task-common skills and task-specific skills, while the skill parameters being highly parameterized using low-rank techniques. Each task is associated with a customizable number of exclusive specialized skills and also benefits from skills shared with peer tasks. A skill assignment matrix is jointly learned. To evaluate our approach, we conducted extensive experiments on the Super-NaturalInstructions and the SuperGLUE benchmarks. Our findings demonstrate that C-Poly outperforms fully-shared, task-specific, and skill-indistinguishable baselines, significantly enhancing the sample efficiency in multi-task learning scenarios.