Boston University
Abstract:Emotional expression in human speech is nuanced and compositional, often involving multiple, sometimes conflicting, affective cues that may diverge from linguistic content. In contrast, most expressive text-to-speech systems enforce a single utterance-level emotion, collapsing affective diversity and suppressing mixed or text-emotion-misaligned expression. While activation steering via latent direction vectors offers a promising solution, it remains unclear whether emotion representations are linearly steerable in TTS, where steering should be applied within hybrid TTS architectures, and how such complex emotion behaviors should be evaluated. This paper presents the first systematic analysis of activation steering for emotional control in hybrid TTS models, introducing a quantitative, controllable steering framework, and multi-rater evaluation protocols that enable composable mixed-emotion synthesis and reliable text-emotion mismatch synthesis. Our results demonstrate, for the first time, that emotional prosody and expressive variability are primarily synthesized by the TTS language module instead of the flow-matching module, and also provide a lightweight steering approach for generating natural, human-like emotional speech.
Abstract:Despite strong performance on existing benchmarks, it remains unclear whether large language models can reason over genuinely novel scientific information. Most evaluations score end-to-end RAG pipelines, where reasoning is confounded with retrieval and toolchain choices, and the signal is further contaminated by parametric memorization and open-web volatility. We introduce DeR2, a controlled deep-research sandbox that isolates document-grounded reasoning while preserving core difficulties of deep search: multi-step synthesis, denoising, and evidence-based conclusion making. DeR2 decouples evidence access from reasoning via four regimes--Instruction-only, Concepts (gold concepts without documents), Related-only (only relevant documents), and Full-set (relevant documents plus topically related distractors)--yielding interpretable regime gaps that operationalize retrieval loss vs. reasoning loss and enable fine-grained error attribution. To prevent parametric leakage, we apply a two-phase validation that requires parametric failure without evidence while ensuring oracle-concept solvability. To ensure reproducibility, each instance provides a frozen document library (drawn from 2023-2025 theoretical papers) with expert-annotated concepts and validated rationales. Experiments across a diverse set of state-of-the-art foundation models reveal substantial variation and significant headroom: some models exhibit mode-switch fragility, performing worse with the Full-set than with Instruction-only, while others show structural concept misuse, correctly naming concepts but failing to execute them as procedures.
Abstract:End-to-end Vision-language Models (VLMs) often answer visual questions by exploiting spurious correlations instead of causal visual evidence, and can become more shortcut-prone when fine-tuned. We introduce VISTA (Visual-Information Separation for Text-based Analysis), a modular framework that decouples perception from reasoning via an explicit information bottleneck. A frozen VLM sensor is restricted to short, objective perception queries, while a text-only LLM reasoner decomposes each question, plans queries, and aggregates visual facts in natural language. This controlled interface defines a reward-aligned environment for training unbiased visual reasoning with reinforcement learning. Instantiated with Qwen2.5-VL and Llama3.2-Vision sensors, and trained with GRPO from only 641 curated multi-step questions, VISTA significantly improves robustness to real-world spurious correlations on SpuriVerse (+16.29% with Qwen-2.5-VL-7B and +6.77% with Llama-3.2-Vision-11B), while remaining competitive on MMVP and a balanced SeedBench subset. VISTA transfers robustly across unseen VLM sensors and is able to recognize and recover from VLM perception failures. Human analysis further shows that VISTA's reasoning traces are more neutral, less reliant on spurious attributes, and more explicitly grounded in visual evidence than end-to-end VLM baselines.
Abstract:Can humans identify AI-generated (fake) videos and provide grounded reasons? While video generation models have advanced rapidly, a critical dimension -- whether humans can detect deepfake traces within a generated video, i.e., spatiotemporal grounded visual artifacts that reveal a video as machine generated -- has been largely overlooked. We introduce DeeptraceReward, the first fine-grained, spatially- and temporally- aware benchmark that annotates human-perceived fake traces for video generation reward. The dataset comprises 4.3K detailed annotations across 3.3K high-quality generated videos. Each annotation provides a natural-language explanation, pinpoints a bounding-box region containing the perceived trace, and marks precise onset and offset timestamps. We consolidate these annotations into 9 major categories of deepfake traces that lead humans to identify a video as AI-generated, and train multimodal language models (LMs) as reward models to mimic human judgments and localizations. On DeeptraceReward, our 7B reward model outperforms GPT-5 by 34.7% on average across fake clue identification, grounding, and explanation. Interestingly, we observe a consistent difficulty gradient: binary fake v.s. real classification is substantially easier than fine-grained deepfake trace detection; within the latter, performance degrades from natural language explanations (easiest), to spatial grounding, to temporal labeling (hardest). By foregrounding human-perceived deepfake traces, DeeptraceReward provides a rigorous testbed and training signal for socially aware and trustworthy video generation.
Abstract:Knowledge Graph (KG) reasoning, which aims to infer new facts from structured knowledge repositories, plays a vital role in Natural Language Processing (NLP) systems. Its effectiveness critically depends on constructing informative and contextually relevant reasoning paths. However, existing graph neural networks (GNNs) often adopt rigid, query-agnostic path-exploration strategies, limiting their ability to adapt to diverse linguistic contexts and semantic nuances. To address these limitations, we propose \textbf{MoKGR}, a mixture-of-experts framework that personalizes path exploration through two complementary components: (1) a mixture of length experts that adaptively selects and weights candidate path lengths according to query complexity, providing query-specific reasoning depth; and (2) a mixture of pruning experts that evaluates candidate paths from a complementary perspective, retaining the most informative paths for each query. Through comprehensive experiments on diverse benchmark, MoKGR demonstrates superior performance in both transductive and inductive settings, validating the effectiveness of personalized path exploration in KGs reasoning.
Abstract:Foundation models have demonstrated remarkable capabilities across various domains, but developing analogous models for knowledge graphs presents unique challenges due to their dynamic nature and the need for cross-domain reasoning. To address these issues, we introduce \textbf{\textsc{GraphOracle}}, a relation-centric foundation model that unifies reasoning across knowledge graphs by converting them into Relation-Dependency Graphs (RDG), explicitly encoding compositional patterns with fewer edges than prior methods. A query-dependent attention mechanism is further developed to learn inductive representations for both relations and entities. Pre-training on diverse knowledge graphs, followed by minutes-level fine-tuning, enables effective generalization to unseen entities, relations, and entire graphs. Through comprehensive experiments on 31 diverse benchmarks spanning transductive, inductive, and cross-domain settings, we demonstrate consistent state-of-the-art performance with minimal adaptation, improving the prediction performance by up to 35\% compared to the strongest baselines.
Abstract:Large Language Models (LLMs) have demonstrated remarkable performance across various tasks. However, they are prone to contextual hallucination, generating information that is either unsubstantiated or contradictory to the given context. Although many studies have investigated contextual hallucinations in LLMs, addressing them in long-context inputs remains an open problem. In this work, we take an initial step toward solving this problem by constructing a dataset specifically designed for long-context hallucination detection. Furthermore, we propose a novel architecture that enables pre-trained encoder models, such as BERT, to process long contexts and effectively detect contextual hallucinations through a decomposition and aggregation mechanism. Our experimental results show that the proposed architecture significantly outperforms previous models of similar size as well as LLM-based models across various metrics, while providing substantially faster inference.
Abstract:As NLP models become increasingly integrated into real-world applications, it becomes clear that there is a need to address the fact that models often rely on and generate conflicting information. Conflicts could reflect the complexity of situations, changes that need to be explained and dealt with, difficulties in data annotation, and mistakes in generated outputs. In all cases, disregarding the conflicts in data could result in undesired behaviors of models and undermine NLP models' reliability and trustworthiness. This survey categorizes these conflicts into three key areas: (1) natural texts on the web, where factual inconsistencies, subjective biases, and multiple perspectives introduce contradictions; (2) human-annotated data, where annotator disagreements, mistakes, and societal biases impact model training; and (3) model interactions, where hallucinations and knowledge conflicts emerge during deployment. While prior work has addressed some of these conflicts in isolation, we unify them under the broader concept of conflicting information, analyze their implications, and discuss mitigation strategies. We highlight key challenges and future directions for developing conflict-aware NLP systems that can reason over and reconcile conflicting information more effectively.
Abstract:Analyzing ideological discourse even in the age of LLMs remains a challenge, as these models often struggle to capture the key elements that shape real-world narratives. Specifically, LLMs fail to focus on characteristic elements driving dominant discourses and lack the ability to integrate contextual information required for understanding abstract ideological views. To address these limitations, we propose a framework motivated by the theory of ideological discourse analysis to analyze news articles related to real-world events. Our framework represents the news articles using a relational structure - talking points, which captures the interaction between entities, their roles, and media frames along with a topic of discussion. It then constructs a vocabulary of repeating themes - prominent talking points, that are used to generate ideology-specific viewpoints (or partisan perspectives). We evaluate our framework's ability to generate these perspectives through automated tasks - ideology and partisan classification tasks, supplemented by human validation. Additionally, we demonstrate straightforward applicability of our framework in creating event snapshots, a visual way of interpreting event discourse. We release resulting dataset and model to the community to support further research.




Abstract:Open domain question answering systems frequently rely on information retrieved from large collections of text (such as the Web) to answer questions. However, such collections of text often contain conflicting information, and indiscriminately depending on this information may result in untruthful and inaccurate answers. To understand the gravity of this problem, we collect a human-annotated dataset, Question Answering with Conflicting Contexts (QACC), and find that as much as 25% of unambiguous, open domain questions can lead to conflicting contexts when retrieved using Google Search. We evaluate and benchmark three powerful Large Language Models (LLMs) with our dataset QACC and demonstrate their limitations in effectively addressing questions with conflicting information. To explore how humans reason through conflicting contexts, we request our annotators to provide explanations for their selections of correct answers. We demonstrate that by finetuning LLMs to explain their answers, we can introduce richer information into their training that guide them through the process of reasoning with conflicting contexts.