Shammie
Abstract:Quantifying the uncertainty in the factual parametric knowledge of Large Language Models (LLMs), especially in a black-box setting, poses a significant challenge. Existing methods, which gauge a model's uncertainty through evaluating self-consistency in responses to the original query, do not always capture true uncertainty. Models might respond consistently to the origin query with a wrong answer, yet respond correctly to varied questions from different perspectives about the same query, and vice versa. In this paper, we propose a novel method, DiverseAgentEntropy, for evaluating a model's uncertainty using multi-agent interaction under the assumption that if a model is certain, it should consistently recall the answer to the original query across a diverse collection of questions about the same original query. We further implement an abstention policy to withhold responses when uncertainty is high. Our method offers a more accurate prediction of the model's reliability and further detects hallucinations, outperforming other self-consistency-based methods. Additionally, it demonstrates that existing models often fail to consistently retrieve the correct answer to the same query under diverse varied questions even when knowing the correct answer.
Abstract:Open domain question answering systems frequently rely on information retrieved from large collections of text (such as the Web) to answer questions. However, such collections of text often contain conflicting information, and indiscriminately depending on this information may result in untruthful and inaccurate answers. To understand the gravity of this problem, we collect a human-annotated dataset, Question Answering with Conflicting Contexts (QACC), and find that as much as 25% of unambiguous, open domain questions can lead to conflicting contexts when retrieved using Google Search. We evaluate and benchmark three powerful Large Language Models (LLMs) with our dataset QACC and demonstrate their limitations in effectively addressing questions with conflicting information. To explore how humans reason through conflicting contexts, we request our annotators to provide explanations for their selections of correct answers. We demonstrate that by finetuning LLMs to explain their answers, we can introduce richer information into their training that guide them through the process of reasoning with conflicting contexts.
Abstract:Attribute-controlled translation (ACT) is a subtask of machine translation that involves controlling stylistic or linguistic attributes (like formality and gender) of translation outputs. While ACT has garnered attention in recent years due to its usefulness in real-world applications, progress in the task is currently limited by dataset availability, since most prior approaches rely on supervised methods. To address this limitation, we propose Retrieval and Attribute-Marking enhanced Prompting (RAMP), which leverages large multilingual language models to perform ACT in few-shot and zero-shot settings. RAMP improves generation accuracy over the standard prompting approach by (1) incorporating a semantic similarity retrieval component for selecting similar in-context examples, and (2) marking in-context examples with attribute annotations. Our comprehensive experiments show that RAMP is a viable approach in both zero-shot and few-shot settings.
Abstract:Naturally-occurring information-seeking questions often contain questionable assumptions -- assumptions that are false or unverifiable. Questions containing questionable assumptions are challenging because they require a distinct answer strategy that deviates from typical answers to information-seeking questions. For instance, the question "When did Marie Curie discover Uranium?" cannot be answered as a typical when question without addressing the false assumption "Marie Curie discovered Uranium". In this work, we propose (QA)$^2$ (Question Answering with Questionable Assumptions), an open-domain evaluation dataset consisting of naturally-occurring search engine queries that may or may not contain questionable assumptions. To be successful on (QA)$^2$, systems must be able to detect questionable assumptions and also be able to produce adequate responses for both typical information-seeking questions and ones with questionable assumptions. We find that current models do struggle with handling questionable assumptions -- the best performing model achieves 59% human rater acceptability on abstractive QA with (QA)$^2$ questions, leaving substantial headroom for progress.
Abstract:Language models demonstrate both quantitative improvement and new qualitative capabilities with increasing scale. Despite their potentially transformative impact, these new capabilities are as yet poorly characterized. In order to inform future research, prepare for disruptive new model capabilities, and ameliorate socially harmful effects, it is vital that we understand the present and near-future capabilities and limitations of language models. To address this challenge, we introduce the Beyond the Imitation Game benchmark (BIG-bench). BIG-bench currently consists of 204 tasks, contributed by 442 authors across 132 institutions. Task topics are diverse, drawing problems from linguistics, childhood development, math, common-sense reasoning, biology, physics, social bias, software development, and beyond. BIG-bench focuses on tasks that are believed to be beyond the capabilities of current language models. We evaluate the behavior of OpenAI's GPT models, Google-internal dense transformer architectures, and Switch-style sparse transformers on BIG-bench, across model sizes spanning millions to hundreds of billions of parameters. In addition, a team of human expert raters performed all tasks in order to provide a strong baseline. Findings include: model performance and calibration both improve with scale, but are poor in absolute terms (and when compared with rater performance); performance is remarkably similar across model classes, though with benefits from sparsity; tasks that improve gradually and predictably commonly involve a large knowledge or memorization component, whereas tasks that exhibit "breakthrough" behavior at a critical scale often involve multiple steps or components, or brittle metrics; social bias typically increases with scale in settings with ambiguous context, but this can be improved with prompting.
Abstract:It is well documented that NLP models learn social biases present in the world, but little work has been done to show how these biases manifest in actual model outputs for applied tasks like question answering (QA). We introduce the Bias Benchmark for QA (BBQ), a dataset consisting of question-sets constructed by the authors that highlight \textit{attested} social biases against people belonging to protected classes along nine different social dimensions relevant for U.S. English-speaking contexts. Our task evaluates model responses at two distinct levels: (i) given an under-informative context, test how strongly model answers reflect social biases, and (ii) given an adequately informative context, test whether the model's biases still override a correct answer choice. We find that models strongly rely on stereotypes when the context is ambiguous, meaning that the model's outputs consistently reproduce harmful biases in this setting. Though models are much more accurate when the context provides an unambiguous answer, they still rely on stereotyped information and achieve an accuracy 2.5 percentage points higher on examples where the correct answer aligns with a social bias, with this accuracy difference widening to 5 points for examples targeting gender.
Abstract:Recent years have seen numerous NLP datasets introduced to evaluate the performance of fine-tuned models on natural language understanding tasks. Recent results from large pretrained models, though, show that many of these datasets are largely saturated and unlikely to be able to detect further progress. What kind of datasets are still effective at discriminating among strong models, and what kind of datasets should we expect to be able to detect future improvements? To measure this uniformly across datasets, we draw on Item Response Theory and evaluate 29 datasets using predictions from 18 pretrained Transformer models on individual test examples. We find that Quoref, HellaSwag, and MC-TACO are best suited for distinguishing among state-of-the-art models, while SNLI, MNLI, and CommitmentBank seem to be saturated for current strong models. We also observe span selection task format, which is used for QA datasets like QAMR or SQuAD2.0, is effective in differentiating between strong and weak models.
Abstract:Intermediate-task training has been shown to substantially improve pretrained model performance on many language understanding tasks, at least in monolingual English settings. Here, we investigate whether English intermediate-task training is still helpful on non-English target tasks in a zero-shot cross-lingual setting. Using a set of 7 intermediate language understanding tasks, we evaluate intermediate-task transfer in a zero-shot cross-lingual setting on 9 target tasks from the XTREME benchmark. Intermediate-task training yields large improvements on the BUCC and Tatoeba tasks that use model representations directly without training, and moderate improvements on question-answering target tasks. Using SQuAD for intermediate training achieves the best results across target tasks, with an average improvement of 8.4 points on development sets. Selecting the best intermediate task model for each target task, we obtain a 6.1 point improvement over XLM-R Large on the XTREME benchmark, setting a new state of the art. Finally, we show that neither multi-task intermediate-task training nor continuing multilingual MLM during intermediate-task training offer significant improvements.
Abstract:While pretrained models such as BERT have shown large gains across natural language understanding tasks, their performance can be improved by further training the model on a data-rich intermediate task, before fine-tuning it on a target task. However, it is still poorly understood when and why intermediate-task training is beneficial for a given target task. To investigate this, we perform a large-scale study on the pretrained RoBERTa model with 110 intermediate-target task combinations. We further evaluate all trained models with 25 probing tasks meant to reveal the specific skills that drive transfer. We observe that intermediate tasks requiring high-level inference and reasoning abilities tend to work best. We also observe that target task performance is strongly correlated with higher-level abilities such as coreference resolution. However, we fail to observe more granular correlations between probing and target task performance, highlighting the need for further work on broad-coverage probing benchmarks. We also observe evidence that the forgetting of knowledge learned during pretraining may limit our analysis, highlighting the need for further work on transfer learning methods in these settings.
Abstract:We introduce jiant, an open source toolkit for conducting multitask and transfer learning experiments on English NLU tasks. jiant enables modular and configuration-driven experimentation with state-of-the-art models and implements a broad set of tasks for probing, transfer learning, and multitask training experiments. jiant implements over 50 NLU tasks, including all GLUE and SuperGLUE benchmark tasks. We demonstrate that jiant reproduces published performance on a variety of tasks and models, including BERT and RoBERTa. jiant is available at https://jiant.info.