Abstract:Large language models are increasingly trained on corpora containing both natural language and non-linguistic data like source code. Aside from aiding programming-related tasks, anecdotal evidence suggests that including code in pretraining corpora may improve performance on other, unrelated tasks, yet to date no work has been able to establish a causal connection by controlling between language and code data. Here we do just this. We pretrain language models on datasets which interleave natural language and code in two different settings: additive, in which the total volume of data seen during pretraining is held constant; and competitive, in which the volume of language data is held constant. We study how the pretraining mixture affects performance on (a) a diverse collection of tasks included in the BigBench benchmark, and (b) compositionality, measured by generalization accuracy on semantic parsing and syntactic transformations. We find that pretraining on higher proportions of code improves performance on compositional tasks involving structured output (like semantic parsing), and mathematics. Conversely, increase code mixture can harm performance on other tasks, including on tasks that requires sensitivity to linguistic structure such as syntax or morphology, and tasks measuring real-world knowledge.
Abstract:State-space models (SSMs) have emerged as a potential alternative architecture for building large language models (LLMs) compared to the previously ubiquitous transformer architecture. One theoretical weakness of transformers is that they cannot express certain kinds of sequential computation and state tracking (Merrill and Sabharwal, 2023), which SSMs are explicitly designed to address via their close architectural similarity to recurrent neural networks (RNNs). But do SSMs truly have an advantage (over transformers) in expressive power for state tracking? Surprisingly, the answer is no. Our analysis reveals that the expressive power of SSMs is limited very similarly to transformers: SSMs cannot express computation outside the complexity class $\mathsf{TC}^0$. In particular, this means they cannot solve simple state-tracking problems like permutation composition. It follows that SSMs are provably unable to accurately track chess moves with certain notation, evaluate code, or track entities in a long narrative. To supplement our formal analysis, we report experiments showing that Mamba-style SSMs indeed struggle with state tracking. Thus, despite its recurrent formulation, the "state" in an SSM is an illusion: SSMs have similar expressiveness limitations to non-recurrent models like transformers, which may fundamentally limit their ability to solve real-world state-tracking problems.
Abstract:We present GPQA, a challenging dataset of 448 multiple-choice questions written by domain experts in biology, physics, and chemistry. We ensure that the questions are high-quality and extremely difficult: experts who have or are pursuing PhDs in the corresponding domains reach 65% accuracy (74% when discounting clear mistakes the experts identified in retrospect), while highly skilled non-expert validators only reach 34% accuracy, despite spending on average over 30 minutes with unrestricted access to the web (i.e., the questions are "Google-proof"). The questions are also difficult for state-of-the-art AI systems, with our strongest GPT-4 based baseline achieving 39% accuracy. If we are to use future AI systems to help us answer very hard questions, for example, when developing new scientific knowledge, we need to develop scalable oversight methods that enable humans to supervise their outputs, which may be difficult even if the supervisors are themselves skilled and knowledgeable. The difficulty of GPQA both for skilled non-experts and frontier AI systems should enable realistic scalable oversight experiments, which we hope can help devise ways for human experts to reliably get truthful information from AI systems that surpass human capabilities.
Abstract:As AI systems are used to answer more difficult questions and potentially help create new knowledge, judging the truthfulness of their outputs becomes more difficult and more important. How can we supervise unreliable experts, which have access to the truth but may not accurately report it, to give answers that are systematically true and don't just superficially seem true, when the supervisor can't tell the difference between the two on their own? In this work, we show that debate between two unreliable experts can help a non-expert judge more reliably identify the truth. We collect a dataset of human-written debates on hard reading comprehension questions where the judge has not read the source passage, only ever seeing expert arguments and short quotes selectively revealed by 'expert' debaters who have access to the passage. In our debates, one expert argues for the correct answer, and the other for an incorrect answer. Comparing debate to a baseline we call consultancy, where a single expert argues for only one answer which is correct half of the time, we find that debate performs significantly better, with 84% judge accuracy compared to consultancy's 74%. Debates are also more efficient, being 68% of the length of consultancies. By comparing human to AI debaters, we find evidence that with more skilled (in this case, human) debaters, the performance of debate goes up but the performance of consultancy goes down. Our error analysis also supports this trend, with 46% of errors in human debate attributable to mistakes by the honest debater (which should go away with increased skill); whereas 52% of errors in human consultancy are due to debaters obfuscating the relevant evidence from the judge (which should become worse with increased skill). Overall, these results show that debate is a promising approach for supervising increasingly capable but potentially unreliable AI systems.
Abstract:In-context learning (ICL) is now a common method for supervising large language models (LLMs): given labeled examples in the input context, the LLM learns to perform the task without weight updates. Despite ICL's prevalence and utility, we understand little about whether models supervised in this manner represent the underlying structure of their tasks, rather than superficial heuristics that only generalize to identically distributed examples. In this study, we investigate the robustness of LLMs supervised via ICL using the test case of sensitivity to syntax, which is a prerequisite for robust language understanding. Our experiments are based on two simple and well-controlled syntactic transformations tasks, where correct out-of-distribution generalization requires an accurate syntactic analysis of the input. We further investigate whether out-of-distribution generalization can be improved via chain-of-thought prompting, where the model is provided with a sequence of intermediate computation steps that illustrate how the task ought to be performed. In experiments with models from the GPT, PaLM, and Llama 2 families, we find large variance across LMs on this fundamental linguistic phenomenon, and that the variance is explained more by the composition of the pre-training corpus and supervision methods than by model size. In particular, we find evidence that models pre-trained on code generalize better, and benefit to a greater extent from chain-of-thought prompting.
Abstract:Language models are typically evaluated on their success at predicting the distribution of specific words in specific contexts. Yet linguistic knowledge also encodes relationships between contexts, allowing inferences between word distributions. We investigate the degree to which pre-trained Transformer-based large language models (LLMs) represent such relationships, focusing on the domain of argument structure. We find that LLMs perform well in generalizing the distribution of a novel noun argument between related contexts that were seen during pre-training (e.g., the active object and passive subject of the verb spray), succeeding by making use of the semantically-organized structure of the embedding space for word embeddings. However, LLMs fail at generalizations between related contexts that have not been observed during pre-training, but which instantiate more abstract, but well-attested structural generalizations (e.g., between the active object and passive subject of an arbitrary verb). Instead, in this case, LLMs show a bias to generalize based on linear order. This finding points to a limitation with current models and points to a reason for which their training is data-intensive.s reported here are available at https://github.com/clay-lab/structural-alternations.
Abstract:To process novel sentences, language models (LMs) must generalize compositionally -- combine familiar elements in new ways. What aspects of a model's structure promote compositional generalization? Focusing on transformers, we test the hypothesis, motivated by recent theoretical and empirical work, that transformers generalize more compositionally when they are deeper (have more layers). Because simply adding layers increases the total number of parameters, confounding depth and size, we construct three classes of models which trade off depth for width such that the total number of parameters is kept constant (41M, 134M and 374M parameters). We pretrain all models as LMs and fine-tune them on tasks that test for compositional generalization. We report three main conclusions: (1) after fine-tuning, deeper models generalize better out-of-distribution than shallower models do, but the relative benefit of additional layers diminishes rapidly; (2) within each family, deeper models show better language modeling performance, but returns are similarly diminishing; (3) the benefits of depth for compositional generalization cannot be attributed solely to better performance on language modeling or on in-distribution data.
Abstract:Naturally-occurring information-seeking questions often contain questionable assumptions -- assumptions that are false or unverifiable. Questions containing questionable assumptions are challenging because they require a distinct answer strategy that deviates from typical answers to information-seeking questions. For instance, the question "When did Marie Curie discover Uranium?" cannot be answered as a typical when question without addressing the false assumption "Marie Curie discovered Uranium". In this work, we propose (QA)$^2$ (Question Answering with Questionable Assumptions), an open-domain evaluation dataset consisting of naturally-occurring search engine queries that may or may not contain questionable assumptions. To be successful on (QA)$^2$, systems must be able to detect questionable assumptions and also be able to produce adequate responses for both typical information-seeking questions and ones with questionable assumptions. We find that current models do struggle with handling questionable assumptions -- the best performing model achieves 59% human rater acceptability on abstractive QA with (QA)$^2$ questions, leaving substantial headroom for progress.
Abstract:How is knowledge of position-role mappings in natural language learned? We explore this question in a computational setting, testing whether a variety of well-performing pertained language models (BERT, RoBERTa, and DistilBERT) exhibit knowledge of these mappings, and whether this knowledge persists across alternations in syntactic, structural, and lexical alternations. In Experiment 1, we show that these neural models do indeed recognize distinctions between theme and recipient roles in ditransitive constructions, and that these distinct patterns are shared across construction type. We strengthen this finding in Experiment 2 by showing that fine-tuning these language models on novel theme- and recipient-like tokens in one paradigm allows the models to make correct predictions about their placement in other paradigms, suggesting that the knowledge of these mappings is shared rather than independently learned. We do, however, observe some limitations of this generalization when tasks involve constructions with novel ditransitive verbs, hinting at a degree of lexical specificity which underlies model performance.
Abstract:Natural language exhibits patterns of hierarchically governed dependencies, in which relations between words are sensitive to syntactic structure rather than linear ordering. While re-current network models often fail to generalize in a hierarchically sensitive way (McCoy et al.,2020) when trained on ambiguous data, the improvement in performance of newer Trans-former language models (Vaswani et al., 2017)on a range of syntactic benchmarks trained on large data sets (Goldberg, 2019; Warstadtet al., 2019) opens the question of whether these models might exhibit hierarchical generalization in the face of impoverished data.In this paper we examine patterns of structural generalization for Transformer sequence-to-sequence models and find that not only do Transformers fail to generalize hierarchically across a wide variety of grammatical mapping tasks, but they exhibit an even stronger preference for linear generalization than comparable recurrent networks