Abstract:Language model performance depends on identifying the optimal mixture of data groups to train on (e.g., law, code, math). Prior work has proposed a diverse set of methods to efficiently learn mixture proportions, ranging from fitting regression models over training runs to dynamically updating proportions throughout training. Surprisingly, we find that no existing method consistently outperforms a simple stratified sampling baseline in terms of average test perplexity per group. In this paper, we study the cause of this inconsistency by unifying existing methods into a standard optimization framework. We show that all methods set proportions to minimize total loss, subject to a method-specific mixing law -- an assumption on how loss is a function of mixture proportions. We find that existing parameterizations of mixing laws can express the true loss-proportion relationship empirically, but the methods themselves often set the mixing law parameters inaccurately, resulting in poor and inconsistent performance. Finally, we leverage the insights from our framework to derive a new online method named Aioli, which directly estimates the mixing law parameters throughout training and uses them to dynamically adjust proportions. Empirically, Aioli outperforms stratified sampling on 6 out of 6 datasets by an average of 0.28 test perplexity points, whereas existing methods fail to consistently beat stratified sampling, doing up to 6.9 points worse. Moreover, in a practical setting where proportions are learned on shorter runs due to computational constraints, Aioli can dynamically adjust these proportions over the full training run, consistently improving performance over existing methods by up to 12.01 test perplexity points.
Abstract:After last year's successful BabyLM Challenge, the competition will be hosted again in 2024/2025. The overarching goals of the challenge remain the same; however, some of the competition rules will be different. The big changes for this year's competition are as follows: First, we replace the loose track with a paper track, which allows (for example) non-model-based submissions, novel cognitively-inspired benchmarks, or analysis techniques. Second, we are relaxing the rules around pretraining data, and will now allow participants to construct their own datasets provided they stay within the 100M-word or 10M-word budget. Third, we introduce a multimodal vision-and-language track, and will release a corpus of 50% text-only and 50% image-text multimodal data as a starting point for LM model training. The purpose of this CfP is to provide rules for this year's challenge, explain these rule changes and their rationale in greater detail, give a timeline of this year's competition, and provide answers to frequently asked questions from last year's challenge.
Abstract:Humans extract useful abstractions of the world from noisy sensory data. Serial reproduction allows us to study how people construe the world through a paradigm similar to the game of telephone, where one person observes a stimulus and reproduces it for the next to form a chain of reproductions. Past serial reproduction experiments typically employ a single sensory modality, but humans often communicate abstractions of the world to each other through language. To investigate the effect language on the formation of abstractions, we implement a novel multimodal serial reproduction framework by asking people who receive a visual stimulus to reproduce it in a linguistic format, and vice versa. We ran unimodal and multimodal chains with both humans and GPT-4 and find that adding language as a modality has a larger effect on human reproductions than GPT-4's. This suggests human visual and linguistic representations are more dissociable than those of GPT-4.
Abstract:The impact of randomness on model training is poorly understood. How do differences in data order and initialization actually manifest in the model, such that some training runs outperform others or converge faster? Furthermore, how can we interpret the resulting training dynamics and the phase transitions that characterize different trajectories? To understand the effect of randomness on the dynamics and outcomes of neural network training, we train models multiple times with different random seeds and compute a variety of metrics throughout training, such as the $L_2$ norm, mean, and variance of the neural network's weights. We then fit a hidden Markov model (HMM) over the resulting sequences of metrics. The HMM represents training as a stochastic process of transitions between latent states, providing an intuitive overview of significant changes during training. Using our method, we produce a low-dimensional, discrete representation of training dynamics on grokking tasks, image classification, and masked language modeling. We use the HMM representation to study phase transitions and identify latent "detour" states that slow down convergence.
Abstract:Strong inductive biases are a key component of human intelligence, allowing people to quickly learn a variety of tasks. Although meta-learning has emerged as an approach for endowing neural networks with useful inductive biases, agents trained by meta-learning may acquire very different strategies from humans. We show that co-training these agents on predicting representations from natural language task descriptions and from programs induced to generate such tasks guides them toward human-like inductive biases. Human-generated language descriptions and program induction with library learning both result in more human-like behavior in downstream meta-reinforcement learning agents than less abstract controls (synthetic language descriptions, program induction without library learning), suggesting that the abstraction supported by these representations is key.